Department of Computer Science, University of Toronto, Toronto, Canada.
Vector Institute for Artificial Intelligence, Toronto, Canada.
PLoS One. 2022 May 12;17(5):e0267964. doi: 10.1371/journal.pone.0267964. eCollection 2022.
Currently, in Canada, existing health administrative data and hospital-inputted portal systems are used to measure the wait times to receiving a procedure or therapy after a specialist visit. However, due to missing and inconsistent labelling, estimating the wait time prior to seeing a specialist physician requires costly manual coding to label primary care referral notes.
In this work, we represent the notes using word-count vectors and develop a logistic regression machine learning model to automatically label the target specialist physician from a primary care referral note. These labels are not available in the administrative system. We also study the effects of note length (measured in number of tokens) and dataset size (measured in number of notes per target specialty) on model performance to help other researchers determine if such an approach may be feasible for them. We then calculate the wait time by linking the specialist type from a primary care referral to a full consultation visit held in Ontario, Canada health administrative data.
For many target specialties, we can reliably (F1Score ≥ 0.70) predict the target specialist type. Doing so enables the automated measurement of wait time from family physician referral to specialist physician visit. Of the six specialties with wait times estimated using both 2008 and 2015 data, two had a substantial increase (defined as a change such that the original value lay outside the 95% confidence interval) in both median and 75th percentile wait times, one had a substantial decrease in both median and 75th percentile wait times, and three has non-substantial increases.
Automating these wait time measurements, which had previously been too time consuming and costly to evaluate at a population level, can be useful for health policy researchers studying the effects of policy decisions on patient access to care.
目前在加拿大,使用现有的健康管理数据和医院输入的门户系统来衡量在专科就诊后接受手术或治疗的等待时间。然而,由于标记缺失且不一致,在就诊前估计等待时间需要进行昂贵的人工编码来标记初级保健转诊记录。
在这项工作中,我们使用词汇计数向量表示这些记录,并开发了一个逻辑回归机器学习模型,以自动从初级保健转诊记录中标记目标专科医生。这些标签在管理系统中不可用。我们还研究了记录长度(以标记数表示)和数据集大小(以每个目标专业的记录数表示)对模型性能的影响,以帮助其他研究人员确定这种方法是否对他们可行。然后,我们通过将初级保健转诊中的专科类型链接到在加拿大安大略省进行的完整咨询访问,来计算等待时间。
对于许多目标专科,我们可以可靠地(F1 分数≥0.70)预测目标专科类型。这样做可以实现从家庭医生转诊到专科医生就诊的自动测量等待时间。在使用 2008 年和 2015 年数据估计等待时间的六个专科中,有两个专科的中位数和 75 百分位数等待时间都有显著增加(定义为原始值超出 95%置信区间的变化),有一个专科的中位数和 75 百分位数等待时间都有显著减少,还有三个专科的等待时间有适度增加。
自动化这些等待时间测量,此前由于时间和成本的限制而无法在人群水平上进行评估,对于研究政策决策对患者获得护理的影响的卫生政策研究人员来说可能是有用的。