Vanderlinden Willem, Kolbeck Pauline J, Kriegel Franziska, Walker Philipp U, Lipfert Jan
Department of Physics and Center for Nanoscience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany.
Data Brief. 2020 Mar 12;30:105404. doi: 10.1016/j.dib.2020.105404. eCollection 2020 Jun.
Nucleic acids are central to the storage and transmission of genetic information and play essential roles in many cellular processes. Quantitative understanding and modeling of their functions and properties requires quantitative experimental characterization. We use magnetic tweezers (MT) to apply precisely calibrated stretching forces and linking number changes to DNA and RNA molecules tethered between a surface and superparamagnetic beads. Magnetic torque tweezers (MTT) allow to control the linking number of double-stranded DNA or RNA tethers, while directly measuring molecular torque by monitoring changes in the equilibrium rotation angle upon over- or underwinding of the helical molecules. Here, we provide a comprehensive data set of double-stranded DNA and RNA under controlled stretching as a function of the linking number. We present data for extension and torque as a function of linking number in equilibrium. We report data for the critical torque of buckling and of the torsional stiffness of DNA and RNA as a function of applied force. Finally, we provide dynamic data for the hopping behavior at the DNA buckling point.
核酸对于遗传信息的存储和传递至关重要,并且在许多细胞过程中发挥着关键作用。对其功能和特性进行定量理解和建模需要定量实验表征。我们使用磁镊(MT)对连接在表面和超顺磁性珠子之间的DNA和RNA分子施加精确校准的拉伸力和连环数变化。磁扭矩镊(MTT)能够控制双链DNA或RNA系链的连环数,同时通过监测螺旋分子过度或欠缠绕时平衡旋转角度的变化直接测量分子扭矩。在此,我们提供了在受控拉伸下双链DNA和RNA作为连环数函数的综合数据集。我们展示了平衡时延伸和扭矩作为连环数函数的数据。我们报告了DNA和RNA的屈曲临界扭矩以及扭转刚度作为施加力函数的数据。最后,我们提供了DNA屈曲点处跳跃行为的动态数据。