Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
Nano Lett. 2012 Jul 11;12(7):3634-9. doi: 10.1021/nl301330h. Epub 2012 Jun 8.
The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.
近年来,已经确立的单分子力谱技术已经得到了补充,可以直接测量扭矩和扭转,特别是磁扭矩镊子和光学扭矩扳手。当前扭矩测量方案的一个限制是力和扭矩自由度之间的固有耦合。在这里,我们提出了电磁扭矩镊子(eMTT),它结合了永磁体和电磁铁,以实现力和扭转陷阱刚度的独立控制,从而能够对单分子扭矩和扭转进行敏感测量。使用 eMTT,我们通过简单地跟踪珠子的 (x,y)-位置来演示对连接 DNA 分子的敏感扭矩测量,从而避免了任何角度跟踪算法或标记的需要。利用 eMTT 进行高分辨率扭矩测量,我们在高盐条件下实验证实了 DNA 弯曲过渡时理论预测的扭矩过冲。我们设想,eMTT 所提供的灵活性和控制将使一系列新的扭矩和扭转测量方案从单分子到活细胞成为可能。