Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America.
Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America.
PLoS Genet. 2020 Apr 20;16(4):e1008734. doi: 10.1371/journal.pgen.1008734. eCollection 2020 Apr.
Genome-wide association studies (GWASs) have identified many SNPs associated with various common diseases. Understanding the biological functions of these identified SNP associations requires identifying disease/trait relevant tissues or cell types. Here, we develop a network method, CoCoNet, to facilitate the identification of trait-relevant tissues or cell types. Different from existing approaches, CoCoNet incorporates tissue-specific gene co-expression networks constructed from either bulk or single cell RNA sequencing (RNAseq) studies with GWAS data for trait-tissue inference. In particular, CoCoNet relies on a covariance regression network model to express gene-level effect measurements for the given GWAS trait as a function of the tissue-specific co-expression adjacency matrix. With a composite likelihood-based inference algorithm, CoCoNet is scalable to tens of thousands of genes. We validate the performance of CoCoNet through extensive simulations. We apply CoCoNet for an in-depth analysis of four neurological disorders and four autoimmune diseases, where we integrate the corresponding GWASs with bulk RNAseq data from 38 tissues and single cell RNAseq data from 10 cell types. In the real data applications, we show how CoCoNet can help identify specific glial cell types relevant for neurological disorders and identify disease-targeted colon tissues as relevant for autoimmune diseases.
全基因组关联研究 (GWAS) 已经确定了许多与各种常见疾病相关的 SNP。了解这些已识别 SNP 关联的生物学功能需要识别与疾病/特征相关的组织或细胞类型。在这里,我们开发了一种网络方法 CoCoNet,以促进特征相关组织或细胞类型的识别。与现有方法不同,CoCoNet 将来自批量或单细胞 RNA 测序 (RNAseq) 研究的组织特异性基因共表达网络与 GWAS 数据结合使用,用于特征组织推断。具体来说,CoCoNet 依赖于协方差回归网络模型,将给定 GWAS 特征的基因水平效应测量值表示为组织特异性共表达邻接矩阵的函数。通过基于复合似然的推断算法,CoCoNet 可扩展到数万个基因。我们通过广泛的模拟验证了 CoCoNet 的性能。我们将 CoCoNet 应用于四种神经疾病和四种自身免疫性疾病的深入分析,其中我们将相应的 GWAS 与来自 38 种组织的批量 RNAseq 数据和来自 10 种细胞类型的单细胞 RNAseq 数据整合在一起。在实际数据应用中,我们展示了 CoCoNet 如何帮助识别与神经疾病相关的特定神经胶质细胞类型,并识别与自身免疫性疾病相关的靶向结肠组织。