Zhu Huanhuan, Shang Lulu, Zhou Xiang
Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States.
Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States.
Front Genet. 2021 Jan 22;11:587887. doi: 10.3389/fgene.2020.587887. eCollection 2020.
Genome-wide association studies (GWASs) have identified and replicated many genetic variants that are associated with diseases and disease-related complex traits. However, the biological mechanisms underlying these identified associations remain largely elusive. Exploring the biological mechanisms underlying these associations requires identifying trait-relevant tissues and cell types, as genetic variants likely influence complex traits in a tissue- and cell type-specific manner. Recently, several statistical methods have been developed to integrate genomic data with GWASs for identifying trait-relevant tissues and cell types. These methods often rely on different genomic information and use different statistical models for trait-tissue relevance inference. Here, we present a comprehensive technical review to summarize ten existing methods for trait-tissue relevance inference. These methods make use of different genomic information that include functional annotation information, expression quantitative trait loci information, genetically regulated gene expression information, as well as gene co-expression network information. These methods also use different statistical models that range from linear mixed models to covariance network models. We hope that this review can serve as a useful reference both for methodologists who develop methods and for applied analysts who apply these methods for identifying trait relevant tissues and cell types.
全基因组关联研究(GWAS)已经识别并重复验证了许多与疾病及疾病相关复杂性状相关的基因变异。然而,这些已识别关联背后的生物学机制在很大程度上仍然难以捉摸。探索这些关联背后的生物学机制需要识别与性状相关的组织和细胞类型,因为基因变异可能以组织和细胞类型特异性的方式影响复杂性状。最近,已经开发了几种统计方法来整合基因组数据与GWAS,以识别与性状相关的组织和细胞类型。这些方法通常依赖于不同的基因组信息,并使用不同的统计模型进行性状-组织相关性推断。在这里,我们进行了全面的技术综述,总结了十种现有的性状-组织相关性推断方法。这些方法利用了不同的基因组信息,包括功能注释信息、表达定量性状位点信息、基因调控的基因表达信息以及基因共表达网络信息。这些方法还使用了不同的统计模型,范围从线性混合模型到协方差网络模型。我们希望这篇综述能够为开发方法的方法学家以及将这些方法应用于识别与性状相关组织和细胞类型的应用分析师提供有用的参考。