Poupart Oriane, Schmocker Andreas, Conti Riccardo, Moser Christophe, Nuss Katja M, Grützmacher Hansjörg, Mosimann Pascal J, Pioletti Dominique P
Laboratory of Biomechanical Orthopedics, EPFL, Lausanne, Switzerland.
Laboratory of Applied Photonics Devices, EPFL, Lausanne, Switzerland.
Front Bioeng Biotechnol. 2020 Apr 3;8:261. doi: 10.3389/fbioe.2020.00261. eCollection 2020.
Intracranial aneurysms are increasingly being treated with endovascular therapy, namely coil embolization. Despite being minimally invasive, partial occlusion and recurrence are more frequent compared to open surgical clipping. Therefore, an alternative treatment is needed, ideally combining minimal invasiveness and long-term efficiency. Herein, we propose such an alternative treatment based on an injectable, radiopaque and photopolymerizable polyethylene glycol dimethacrylate hydrogel. The rheological measurements demonstrated a viscosity of 4.86 ± 1.70 mPa.s, which was significantly lower than contrast agent currently used in endovascular treatment ( = 0.42), allowing the hydrogel to be injected through 430 μm inner diameter microcatheters. Photorheology revealed fast hydrogel solidification in 8 min due to the use of a new visible photoinitiator. The addition of an iodinated contrast agent in the precursor contributed to the visibility of the precursor injection under fluoroscopy. Using a customized light-conducting microcatheter and illumination module, the hydrogel was implanted in an silicone aneurysm model. Specifically, fast and controllable injection and photopolymerization of the developed hydrogel is shown to be feasible in this work. Finally, the precursor and the polymerized hydrogel exhibit no toxicity for the endothelial cells. Photopolymerizable hydrogels are expected to be promising candidates for future intracranial aneurysm treatments.
颅内动脉瘤越来越多地采用血管内治疗,即弹簧圈栓塞术。尽管该方法具有微创性,但与开放性手术夹闭相比,部分栓塞和复发更为常见。因此,需要一种替代治疗方法,理想的情况是结合微创性和长期有效性。在此,我们提出一种基于可注射、不透射线且可光聚合的聚乙二醇二甲基丙烯酸酯水凝胶的替代治疗方法。流变学测量表明其粘度为4.86±1.70 mPa·s,显著低于目前血管内治疗中使用的造影剂(=0.42),这使得该水凝胶能够通过内径为430μm的微导管进行注射。光流变学显示,由于使用了一种新型可见光引发剂,水凝胶在8分钟内即可快速固化。在前体中添加碘化造影剂有助于在荧光透视下观察到前体的注射情况。使用定制的导光微导管和照明模块,将水凝胶植入硅胶动脉瘤模型中。具体而言,在这项工作中已证明所研发的水凝胶能够实现快速且可控的注射和光聚合。最后,前体和聚合后的水凝胶对内皮细胞均无毒性。可光聚合水凝胶有望成为未来颅内动脉瘤治疗的有前景的候选材料。