非离子型 NMDA 受体信号在树突棘收缩中的分子机制。
Molecular Mechanisms of Non-ionotropic NMDA Receptor Signaling in Dendritic Spine Shrinkage.
机构信息
Center for Neuroscience, University of California, Davis, Davis, California 95618.
Center for Neuroscience, University of California, Davis, Davis, California 95618
出版信息
J Neurosci. 2020 May 6;40(19):3741-3750. doi: 10.1523/JNEUROSCI.0046-20.2020. Epub 2020 Apr 22.
Structural plasticity of dendritic spines is a key component of the refinement of synaptic connections during learning. Recent studies highlight a novel role for the NMDA receptor (NMDAR), independent of ion flow, in driving spine shrinkage and LTD. Yet little is known about the molecular mechanisms that link conformational changes in the NMDAR to changes in spine size and synaptic strength. Here, using two-photon glutamate uncaging to induce plasticity at individual dendritic spines on hippocampal CA1 neurons from mice and rats of both sexes, we demonstrate that p38 MAPK is generally required downstream of non-ionotropic NMDAR signaling to drive both spine shrinkage and LTD. In a series of pharmacological and molecular genetic experiments, we identify key components of the non-ionotropic NMDAR signaling pathway driving dendritic spine shrinkage, including the interaction between NOS1AP (nitric oxide synthase 1 adaptor protein) and neuronal nitric oxide synthase (nNOS), nNOS enzymatic activity, activation of MK2 (MAPK-activated protein kinase 2) and cofilin, and signaling through CaMKII. Our results represent a large step forward in delineating the molecular mechanisms of non-ionotropic NMDAR signaling that can drive shrinkage and elimination of dendritic spines during synaptic plasticity. Signaling through the NMDA receptor (NMDAR) is vitally important for the synaptic plasticity that underlies learning. Recent studies highlight a novel role for the NMDAR, independent of ion flow, in driving synaptic weakening and dendritic spine shrinkage during synaptic plasticity. Here, we delineate several key components of the molecular pathway that links conformational signaling through the NMDAR to dendritic spine shrinkage during synaptic plasticity.
树突棘的结构可塑性是学习过程中突触连接精细化的关键组成部分。最近的研究强调了 NMDA 受体(NMDAR)的一个新作用,即独立于离子流驱动棘突收缩和 LTD。然而,关于将 NMDAR 的构象变化与棘突大小和突触强度变化联系起来的分子机制知之甚少。在这里,我们使用双光子谷氨酸光解在来自雄性和雌性小鼠和大鼠的海马 CA1 神经元的单个树突棘上诱导可塑性,证明 p38 MAPK 通常是 NMDA 受体非离子型信号传导的下游,驱动棘突收缩和 LTD。在一系列药理学和分子遗传学实验中,我们确定了驱动树突棘收缩的非离子型 NMDAR 信号通路的关键组成部分,包括 NOS1AP(一氧化氮合酶 1 衔接蛋白)与神经元型一氧化氮合酶(nNOS)之间的相互作用、nNOS 酶活性、MK2(MAPK 激活的蛋白激酶 2)和丝切蛋白的激活,以及通过 CaMKII 的信号转导。我们的研究结果在阐明非离子型 NMDAR 信号转导的分子机制方面向前迈进了一大步,该机制可以在突触可塑性过程中驱动树突棘的收缩和消除。NMDA 受体(NMDAR)的信号转导对学习所依赖的突触可塑性至关重要。最近的研究强调了 NMDAR 的一个新作用,即独立于离子流,在驱动突触弱化和树突棘收缩中发挥作用在突触可塑性过程中。在这里,我们描述了将 NMDAR 的构象信号转导与突触可塑性过程中的树突棘收缩联系起来的分子途径的几个关键组成部分。