文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定义脑电图中发作间期癫痫样放电的标准:一项临床验证研究。

Criteria for defining interictal epileptiform discharges in EEG: A clinical validation study.

机构信息

From the Department of Clinical Neurophysiology (M.A.K., L.D., V.S.H., H.T., S.B.), Aarhus University Hospital, Aarhus, Denmark; Department of Neurosurgery (P.G.L.), Rikshospitalet, Oslo University Hospital, Norway; Department of Neurosurgery (S.R.), University Hospital Erlangen, Germany; Department of Neurosurgery (S.R.), University Hospital Halle (Saale), Germany; Epilepsy Center Bethel (R.S.), Mara Hospital, Bielefeld, Germany; Krembil Brain Institute (R.W.), Toronto Western Hospital, University of Toronto, Canada; Department of Biostatistics (B.M.B.), Aarhus University, Denmark; Department of Research (M.S.), BESA GmbH, Gräfelfing, Germany; Department of Clinical Neurophysiology (S.B.), Danish Epilepsy Centre, Dianalund, Denmark; and Department of Clinical Medicine (S.B.), Aarhus University, Denmark.

出版信息

Neurology. 2020 May 19;94(20):e2139-e2147. doi: 10.1212/WNL.0000000000009439. Epub 2020 Apr 22.


DOI:10.1212/WNL.0000000000009439
PMID:32321764
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7526669/
Abstract

OBJECTIVE: To define and validate criteria for accurate identification of EEG interictal epileptiform discharges (IEDs) using (1) the 6 sensor space criteria proposed by the International Federation of Clinical Neurophysiology (IFCN) and (2) a novel source space method. Criteria yielding high specificity are needed because EEG over-reading is a common cause of epilepsy misdiagnosis. METHODS: Seven raters reviewed EEG sharp transients from 100 patients with and without epilepsy (diagnosed definitively by video-EEG recording of habitual events). Raters reviewed the transients, randomized, and classified them as epileptiform or nonepileptiform in 3 separate rounds: in 2, EEG was reviewed in sensor space (scoring the presence/absence of each IFCN criterion for each transient or classifying unrestricted by criteria [expert scoring]); in the other, review and classification were performed in source space. RESULTS: Cutoff values of 4 and 5 criteria in sensor space and analysis in source space provided high accuracy (91%, 88%, and 90%, respectively), similar to expert scoring (92%). Two methods had specificity exceeding the desired threshold of 95%: using 5 IFCN criteria as cutoff and analysis in source space (both 95.65%); the sensitivity of these methods was 81.48% and 85.19%, respectively. CONCLUSIONS: The presence of 5 IFCN criteria in sensor space and analysis in source space are optimal for clinical implementation. By extracting these objective features, diagnostic accuracy similar to expert scorings is achieved. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that IFCN criteria in sensor space and analysis in source space have high specificity (>95%) and sensitivity (81%-85%) for identification of IEDs.

摘要

目的:利用(1)国际临床神经生理学联合会(IFCN)提出的 6 传感器空间标准和(2)一种新的源空间方法,定义并验证准确识别 EEG 发作间期癫痫样放电(IEDs)的标准。由于 EEG 过度解读是癫痫误诊的常见原因,因此需要高特异性的标准。

方法:7 名评分者回顾了 100 名癫痫患者和非癫痫患者(通过习惯性事件的视频-EEG 记录明确诊断)的 EEG 尖波瞬态。评分者在 3 个单独的轮次中随机回顾瞬态并将其分类为癫痫样或非癫痫样:在 2 个轮次中,在传感器空间中回顾 EEG(对每个瞬态存在/不存在每个 IFCN 标准进行评分,或不受标准限制进行分类[专家评分]);在另一个轮次中,在源空间中进行回顾和分类。

结果:在传感器空间中使用 4 个和 5 个标准的截止值以及源空间分析提供了高准确性(分别为 91%、88%和 90%),与专家评分相似(92%)。两种方法的特异性均超过期望的 95%阈值:使用 5 个 IFCN 标准作为截止值和源空间分析(均为 95.65%);这些方法的敏感性分别为 81.48%和 85.19%。

结论:在传感器空间中存在 5 个 IFCN 标准和源空间分析是临床实施的最佳选择。通过提取这些客观特征,可以实现与专家评分相似的诊断准确性。

证据分类:本研究提供了 III 级证据,表明 IFCN 标准在传感器空间和源空间分析具有高特异性(>95%)和敏感性(81%-85%),可用于识别 IEDs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0534/7526669/2ccbdd55a79a/NEUROLOGY2019020164FF3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0534/7526669/91d78be69a31/NEUROLOGY2019020164FF1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0534/7526669/e0f1ee11b612/NEUROLOGY2019020164FF2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0534/7526669/2ccbdd55a79a/NEUROLOGY2019020164FF3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0534/7526669/91d78be69a31/NEUROLOGY2019020164FF1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0534/7526669/e0f1ee11b612/NEUROLOGY2019020164FF2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0534/7526669/2ccbdd55a79a/NEUROLOGY2019020164FF3.jpg

相似文献

[1]
Criteria for defining interictal epileptiform discharges in EEG: A clinical validation study.

Neurology. 2020-4-22

[2]
The influence of the abundance and morphology of epileptiform discharges on diagnostic accuracy: How many spikes you need to spot in an EEG.

Clin Neurophysiol. 2021-7

[3]
Optimized set of criteria for defining interictal epileptiform EEG discharges.

Clin Neurophysiol. 2020-9

[4]
The operational definition of epileptiform discharges significantly improves diagnostic accuracy and inter-rater agreement of trainees in EEG reading.

Epileptic Disord. 2022-4-1

[5]
Accurate identification of EEG recordings with interictal epileptiform discharges using a hybrid approach: Artificial intelligence supervised by human experts.

Epilepsia. 2022-5

[6]
Preoperative simulation of intracerebral epileptiform discharges: synthetic aperture magnetometry virtual sensor analysis of interictal magnetoencephalography data.

J Neurosurg. 2006-7

[7]
Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study.

Brain. 2019-4-1

[8]
The first-hour-of-the-day sleep EEG reliably identifies interictal epileptiform discharges during long-term video-EEG monitoring.

Seizure. 2018-10-26

[9]
Interictal epileptiform discharges vary across age groups.

Clin Neurophysiol. 2019-11-4

[10]
A randomized controlled educational pilot trial of interictal epileptiform discharge identification for neurology residents.

Epileptic Disord. 2024-8

引用本文的文献

[1]
Development and validation of a multimodal automatic interictal epileptiform discharge detection model: a prospective multi-center study.

BMC Med. 2025-8-15

[2]
The optimal montage to mark interictal epileptiform discharges and high-frequency oscillations in intraoperative electrocorticography.

Clin Neurophysiol Pract. 2025-7-1

[3]
STIED: a deep learning model for the spatiotemporal detection of focal interictal epileptiform discharges with MEG.

Sci Rep. 2025-7-1

[4]
Dynamic Causal Tractography Analysis of Auditory Descriptive Naming: An Intracranial Study of 106 Patients.

Neuroimage. 2025-6-19

[5]
Paroxysmal cortical slowing linked to drug-resistant epilepsy.

EBioMedicine. 2025-6

[6]
Visualization of functional and effective connectivity underlying auditory descriptive naming.

Clin Neurophysiol. 2025-7

[7]
The analysis of marketing performance in E-commerce live broadcast platform based on big data and deep learning.

Sci Rep. 2025-5-4

[8]
Knock-in Kcnh2 rabbit model of long QT syndrome type-2, epilepsy, and sudden death.

J Transl Med. 2025-4-15

[9]
Virtual epilepsy patient cohort: Generation and evaluation.

PLoS Comput Biol. 2025-4-11

[10]
Cerebrospinal fluid cytokine levels affect electroencephalographic activity in Alzheimer's disease.

J Alzheimers Dis Rep. 2025-3-28

本文引用的文献

[1]
Taking the EEG Back Into the Brain: The Power of Multiple Discrete Sources.

Front Neurol. 2019-8-20

[2]
A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017.

Clin Neurophysiol Pract. 2017-8-4

[3]
Clinical utility of EEG in diagnosing and monitoring epilepsy in adults.

Clin Neurophysiol. 2018-2-1

[4]
The standardized EEG electrode array of the IFCN.

Clin Neurophysiol. 2017-10

[5]
Characteristics of EEG Interpreters Associated With Higher Interrater Agreement.

J Clin Neurophysiol. 2017-3

[6]
Fast evaluation of interictal spikes in long-term EEG by hyper-clustering.

Epilepsia. 2012-5-11

[7]
Note on the sampling error of the difference between correlated proportions or percentages.

Psychometrika. 1947-6

[8]
Computing inter-rater reliability and its variance in the presence of high agreement.

Br J Math Stat Psychol. 2008-5

[9]
Errors in EEG interpretation and misdiagnosis of epilepsy. Which EEG patterns are overread?

Eur Neurol. 2008

[10]
Errors in EEGs and the misdiagnosis of epilepsy: importance, causes, consequences, and proposed remedies.

Epilepsy Behav. 2007-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索