鉴定和表征一种小分子狂犬病病毒进入抑制剂。

Identification and Characterization of a Small-Molecule Rabies Virus Entry Inhibitor.

机构信息

Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.

Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

出版信息

J Virol. 2020 Jun 16;94(13). doi: 10.1128/JVI.00321-20.

Abstract

Rabies virus (RABV) causes a severe and fatal neurological disease, but morbidity is vaccine preventable and treatable prior to the onset of clinical symptoms. However, immunoglobulin (IgG)-based rabies postexposure prophylaxis (PEP) is expensive, restricting access to life-saving treatment, especially for patients in low-income countries where the clinical need is greatest, and does not confer cross-protection against newly emerging phylogroup II lyssaviruses. Toward identifying a cost-effective replacement for the IgG component of rabies PEP, we developed and implemented a high-throughput screening protocol utilizing a single-cycle RABV reporter strain. A large-scale screen and subsequent direct and orthogonal counterscreens identified a first-in-class direct-acting RABV inhibitor, GRP-60367, with a specificity index (SI) of >100,000. Mechanistic characterization through time-of-addition studies, transient cell-to-cell fusion assays, and chimeric vesicular stomatitis virus (VSV) recombinants expressing the RABV glycoprotein (G) demonstrated that GRP-60367 inhibits entry of a subset of RABV strains. Resistance profiling of the chemotype revealed hot spots in conserved hydrophobic positions of the RABV G protein fusion loop that were confirmed in transient cell-to-cell fusion assays. Transfer of RABV G genes with signature resistance mutations into a recombinant VSV backbone resulted in the recovery of replication-competent virions with low susceptibility to the inhibitor. This work outlines a tangible strategy for mechanistic characterization and resistance profiling of RABV drug candidates and identified a novel, well-behaved molecular probe chemotype that specifically targets the RABV G protein and prevents G-mediated viral entry. Rabies PEP depends on anti-RABV IgG, which is expensive and in limited supply in geographical areas with the highest disease burden. Replacing the IgG component with a cost-effective and shelf-stable small-molecule antiviral could address this unmet clinical need by expanding access to life-saving medication. This study has established a robust protocol for high-throughput anti-RABV drug screens and identified a chemically well-behaved, first-in-class hit with nanomolar anti-RABV potency that blocks RABV G protein-mediated viral entry. Resistance mapping revealed a druggable site formed by the G protein fusion loops that has not previously emerged as a target for neutralizing antibodies. Discovery of this RABV entry inhibitor establishes a new molecular probe to advance further mechanistic and structural characterization of RABV G that may aid in the design of a next-generation clinical candidate against RABV.

摘要

狂犬病病毒(RABV)会导致严重且致命的神经系统疾病,但在出现临床症状之前,通过接种疫苗可以预防和治疗这种疾病。然而,免疫球蛋白(IgG)狂犬病暴露后预防(PEP)费用昂贵,限制了救命治疗的可及性,尤其是在临床需求最大的低收入国家,并且不能提供对新出现的 phylogroup II 狂犬病病毒的交叉保护。为了寻找一种经济有效的狂犬病 PEP IgG 成分替代品,我们开发并实施了一种利用单周期 RABV 报告株的高通量筛选方案。通过大规模筛选和随后的直接和正交对照筛选,确定了一种首创的直接作用的 RABV 抑制剂,GRP-60367,其特异性指数(SI)大于 100,000。通过时间添加研究、瞬时细胞间融合测定和表达 RABV 糖蛋白(G)的嵌合水疱性口炎病毒(VSV)重组体进行的机制特征分析表明,GRP-60367 抑制了一组 RABV 毒株的进入。通过化学型的耐药性分析,发现 RABV G 蛋白融合环保守疏水区的热点位置,并在瞬时细胞间融合测定中得到证实。将具有特征性耐药突变的 RABV G 基因转移到重组 VSV 骨架中,导致恢复了复制能力的病毒粒子,对抑制剂的敏感性降低。这项工作概述了一种用于 RABV 药物候选物的机制特征分析和耐药性分析的切实可行的策略,并确定了一种新型、表现良好的分子探针化学型,该化学型特异性靶向 RABV G 蛋白并阻止 G 介导的病毒进入。狂犬病 PEP 依赖于抗 RABV IgG,这种 IgG 昂贵且在疾病负担最高的地理区域供应有限。用一种经济有效的、稳定的小分子抗病毒药物替代 IgG 成分,可以通过扩大救命药物的可及性来满足这一未满足的临床需求。本研究建立了一种用于高通量抗 RABV 药物筛选的强大方案,并确定了一种具有纳摩尔抗 RABV 效力的化学性质良好的首创类分子探针,该探针可阻断 RABV G 蛋白介导的病毒进入。耐药性图谱显示了一个由 G 蛋白融合环形成的可药物治疗的位点,该位点以前没有作为中和抗体的靶标出现。这种 RABV 进入抑制剂的发现建立了一种新的分子探针,可进一步推进 RABV G 的机制和结构特征分析,这可能有助于设计针对 RABV 的下一代临床候选药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索