Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.
Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
J Virol. 2020 Jun 16;94(13). doi: 10.1128/JVI.00321-20.
Rabies virus (RABV) causes a severe and fatal neurological disease, but morbidity is vaccine preventable and treatable prior to the onset of clinical symptoms. However, immunoglobulin (IgG)-based rabies postexposure prophylaxis (PEP) is expensive, restricting access to life-saving treatment, especially for patients in low-income countries where the clinical need is greatest, and does not confer cross-protection against newly emerging phylogroup II lyssaviruses. Toward identifying a cost-effective replacement for the IgG component of rabies PEP, we developed and implemented a high-throughput screening protocol utilizing a single-cycle RABV reporter strain. A large-scale screen and subsequent direct and orthogonal counterscreens identified a first-in-class direct-acting RABV inhibitor, GRP-60367, with a specificity index (SI) of >100,000. Mechanistic characterization through time-of-addition studies, transient cell-to-cell fusion assays, and chimeric vesicular stomatitis virus (VSV) recombinants expressing the RABV glycoprotein (G) demonstrated that GRP-60367 inhibits entry of a subset of RABV strains. Resistance profiling of the chemotype revealed hot spots in conserved hydrophobic positions of the RABV G protein fusion loop that were confirmed in transient cell-to-cell fusion assays. Transfer of RABV G genes with signature resistance mutations into a recombinant VSV backbone resulted in the recovery of replication-competent virions with low susceptibility to the inhibitor. This work outlines a tangible strategy for mechanistic characterization and resistance profiling of RABV drug candidates and identified a novel, well-behaved molecular probe chemotype that specifically targets the RABV G protein and prevents G-mediated viral entry. Rabies PEP depends on anti-RABV IgG, which is expensive and in limited supply in geographical areas with the highest disease burden. Replacing the IgG component with a cost-effective and shelf-stable small-molecule antiviral could address this unmet clinical need by expanding access to life-saving medication. This study has established a robust protocol for high-throughput anti-RABV drug screens and identified a chemically well-behaved, first-in-class hit with nanomolar anti-RABV potency that blocks RABV G protein-mediated viral entry. Resistance mapping revealed a druggable site formed by the G protein fusion loops that has not previously emerged as a target for neutralizing antibodies. Discovery of this RABV entry inhibitor establishes a new molecular probe to advance further mechanistic and structural characterization of RABV G that may aid in the design of a next-generation clinical candidate against RABV.
狂犬病病毒(RABV)会导致严重且致命的神经系统疾病,但在出现临床症状之前,通过接种疫苗可以预防和治疗这种疾病。然而,免疫球蛋白(IgG)狂犬病暴露后预防(PEP)费用昂贵,限制了救命治疗的可及性,尤其是在临床需求最大的低收入国家,并且不能提供对新出现的 phylogroup II 狂犬病病毒的交叉保护。为了寻找一种经济有效的狂犬病 PEP IgG 成分替代品,我们开发并实施了一种利用单周期 RABV 报告株的高通量筛选方案。通过大规模筛选和随后的直接和正交对照筛选,确定了一种首创的直接作用的 RABV 抑制剂,GRP-60367,其特异性指数(SI)大于 100,000。通过时间添加研究、瞬时细胞间融合测定和表达 RABV 糖蛋白(G)的嵌合水疱性口炎病毒(VSV)重组体进行的机制特征分析表明,GRP-60367 抑制了一组 RABV 毒株的进入。通过化学型的耐药性分析,发现 RABV G 蛋白融合环保守疏水区的热点位置,并在瞬时细胞间融合测定中得到证实。将具有特征性耐药突变的 RABV G 基因转移到重组 VSV 骨架中,导致恢复了复制能力的病毒粒子,对抑制剂的敏感性降低。这项工作概述了一种用于 RABV 药物候选物的机制特征分析和耐药性分析的切实可行的策略,并确定了一种新型、表现良好的分子探针化学型,该化学型特异性靶向 RABV G 蛋白并阻止 G 介导的病毒进入。狂犬病 PEP 依赖于抗 RABV IgG,这种 IgG 昂贵且在疾病负担最高的地理区域供应有限。用一种经济有效的、稳定的小分子抗病毒药物替代 IgG 成分,可以通过扩大救命药物的可及性来满足这一未满足的临床需求。本研究建立了一种用于高通量抗 RABV 药物筛选的强大方案,并确定了一种具有纳摩尔抗 RABV 效力的化学性质良好的首创类分子探针,该探针可阻断 RABV G 蛋白介导的病毒进入。耐药性图谱显示了一个由 G 蛋白融合环形成的可药物治疗的位点,该位点以前没有作为中和抗体的靶标出现。这种 RABV 进入抑制剂的发现建立了一种新的分子探针,可进一步推进 RABV G 的机制和结构特征分析,这可能有助于设计针对 RABV 的下一代临床候选药物。