Suppr超能文献

免疫检查点阻断联合策略与人工智能预测反应。

Combination Strategies for Immune-Checkpoint Blockade and Response Prediction by Artificial Intelligence.

机构信息

Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria.

Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria.

出版信息

Int J Mol Sci. 2020 Apr 19;21(8):2856. doi: 10.3390/ijms21082856.

Abstract

The therapeutic concept of unleashing a pre-existing immune response against the tumor by the application of immune-checkpoint inhibitors (ICI) has resulted in long-term survival in advanced cancer patient subgroups. However, the majority of patients do not benefit from single-agent ICI and therefore new combination strategies are eagerly necessitated. In addition to conventional chemotherapy, kinase inhibitors as well as tumor-specific vaccinations are extensively investigated in combination with ICI to augment therapy responses. An unprecedented clinical outcome with chimeric antigen receptor (CAR-)T cell therapy has led to the approval for relapsed/refractory diffuse large B cell lymphoma and B cell acute lymphoblastic leukemia whereas response rates in solid tumors are unsatisfactory. Immune-checkpoints negatively impact CAR-T cell therapy in hematologic and solid malignancies and as a consequence provide a therapeutic target to overcome resistance. Established biomarkers such as programmed death ligand 1 (PD-L1) and tumor mutational burden (TMB) help to select patients who will benefit most from ICI, however, biomarker negativity does not exclude responses. Investigating alterations in the antigen presenting pathway as well as radiomics have the potential to determine tumor immunogenicity and response to ICI. Within this review we summarize the literature about specific combination partners for ICI and the applicability of artificial intelligence to predict ICI therapy responses.

摘要

通过应用免疫检查点抑制剂(ICI)释放针对肿瘤的预先存在的免疫反应的治疗概念导致了晚期癌症患者亚组的长期生存。然而,大多数患者不能从单一药物 ICI 中获益,因此迫切需要新的联合策略。除了常规化疗外,激酶抑制剂以及肿瘤特异性疫苗也与 ICI 联合广泛研究,以增强治疗反应。嵌合抗原受体(CAR)-T 细胞疗法的前所未有的临床结果导致了复发/难治性弥漫性大 B 细胞淋巴瘤和 B 细胞急性淋巴细胞白血病的批准,而实体瘤的反应率并不令人满意。免疫检查点在血液系统和实体恶性肿瘤中的 CAR-T 细胞治疗中产生负面影响,因此提供了一个治疗靶点以克服耐药性。已建立的生物标志物,如程序性死亡配体 1(PD-L1)和肿瘤突变负担(TMB)有助于选择最能从 ICI 中获益的患者,但是,生物标志物阴性并不能排除反应。研究抗原呈递途径的改变以及放射组学有可能确定肿瘤的免疫原性和对 ICI 的反应。在这篇综述中,我们总结了关于 ICI 的特定联合伙伴以及人工智能预测 ICI 治疗反应的适用性的文献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验