School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
Hum Vaccin Immunother. 2024 Dec 31;20(1):2429893. doi: 10.1080/21645515.2024.2429893. Epub 2024 Nov 28.
Immune checkpoint inhibitors (ICIs) are revolutionizing cancer treatment, and Artificial Intelligence (AI) is a key player in this field. A comprehensive analysis of AI's impact on these inhibitors was lacking, but this study addresses that by analyzing literature for trends and future predictions. It reveals rapid growth and international collaboration. We utilized analytical tools such as CiteSpace, VOSviewer, and PlotDB to analyze 774 documents from the Web of Science Core Collection from 2018 to May 2024, discovering a steady increase in annual publications, with China and the United States leading the way. Sun Yat Sen University and researchers like Ock Chan-young, Zhang Hao, and Newman AM are prominent. The most productive journal is Frontiers in Immunology, while the New England Journal of Medicine has the highest citation rate. The most cited reference is Newman, AM's 2019 article in Nature Biotechnology. Keywords like "immunotherapy," "pembrolizumab," "cancer," "machine learning," and "expression" are central to the discourse. Research focuses on the application of inhibitors in non-small cell lung cancer, bioinformatics, and cancer immunotherapy, showing AI's potential to improve oncology precision medicine. Although AI's application in ICIs shows promise, significant challenges still demand exploration and resolution. Continued investment in AI research in this context could lead to significant advancements in cancer treatment. Global collaboration is needed to overcome these challenges and fully leverage AI's potential. This study provides a foundation for future research and interdisciplinary collaboration in this critical field.
免疫检查点抑制剂 (ICIs) 正在彻底改变癌症治疗,而人工智能 (AI) 是这一领域的关键参与者。缺乏对 AI 对这些抑制剂的影响的全面分析,但本研究通过分析文献中的趋势和未来预测来解决这一问题。它揭示了快速增长和国际合作。我们使用了 CiteSpace、VOSviewer 和 PlotDB 等分析工具,对来自 2018 年至 2024 年 5 月 Web of Science 核心合集的 774 篇文献进行了分析,发现年度出版物数量稳步增加,中国和美国处于领先地位。中山大学和 Ock Chan-young、张昊和 Newman AM 等研究人员表现出色。最具生产力的期刊是《免疫学前沿》,而《新英格兰医学杂志》的引用率最高。被引频次最高的参考文献是 Newman,AM 于 2019 年在《自然生物技术》上发表的文章。“免疫疗法”、“pembrolizumab”、“癌症”、“机器学习”和“表达”等关键词是该研究的核心。研究重点是抑制剂在非小细胞肺癌、生物信息学和癌症免疫治疗中的应用,显示了 AI 提高肿瘤精准医学的潜力。尽管 AI 在 ICIs 中的应用前景广阔,但仍存在重大挑战需要探索和解决。在这方面继续投资 AI 研究可能会为癌症治疗带来重大进展。需要全球合作来克服这些挑战,并充分利用 AI 的潜力。本研究为这一关键领域的未来研究和跨学科合作提供了基础。