Suppr超能文献

支化细胞对称性和其他关键纳米尺度设计参数在决定树状大分子包封性能中的作用。

The Role of Branch Cell Symmetry and Other Critical Nanoscale Design Parameters in the Determination of Dendrimer Encapsulation Properties.

机构信息

Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA.

出版信息

Biomolecules. 2020 Apr 21;10(4):642. doi: 10.3390/biom10040642.

Abstract

This article reviews progress over the past three decades related to the role of dendrimer-based, branch cell symmetry in the development of advanced drug delivery systems, aqueous based compatibilizers/solubilizers/excipients and nano-metal cluster catalysts. Historically, it begins with early unreported work by the Tomalia Group (i.e., The Dow Chemical Co.) revealing that all known dendrimer family types may be divided into two major symmetry categories; namely: Category I: symmetrical branch cell dendrimers (e.g., Tomalia, Vögtle, Newkome-type dendrimers) possessing interior hollowness/porosity and Category II: asymmetrical branch cell dendrimers (e.g., Denkewalter-type) possessing no interior void space. These two branch cell symmetry features were shown to be pivotal in directing internal packing modes; thereby, differentiating key dendrimer properties such as densities, refractive indices and interior porosities. Furthermore, this discovery provided an explanation for unimolecular micelle encapsulation (UME) behavior observed exclusively for Category I, but not for Category II. This account surveys early experiments confirming the inextricable influence of dendrimer branch cell symmetry on interior packing properties, first examples of Category (I) based UME behavior, nuclear magnetic resonance (NMR) protocols for systematic encapsulation characterization, application of these principles to the solubilization of active approved drugs, engineering dendrimer critical nanoscale design parameters (CNDPs) for optimized properties and concluding with high optimism for the anticipated role of dendrimer-based solubilization principles in emerging new life science, drug delivery and nanomedical applications.

摘要

本文回顾了过去三十年在基于树枝状大分子的药物传递系统、水基增容剂/增溶剂/赋形剂和纳米金属簇催化剂的发展中,树枝状大分子的支化细胞对称性所取得的进展。从历史上看,它始于 Tomalia 小组(即陶氏化学公司)早期未报道的工作,该工作表明,所有已知的树枝状大分子家族类型都可以分为两大类对称性;即:I 类:对称支化细胞树枝状大分子(例如,Tomalia、Vögtle、Newkome 型树枝状大分子)具有内部空心/多孔性和 II 类:不对称支化细胞树枝状大分子(例如,Denkewalter 型)没有内部空隙。这两个支化细胞对称性特征被证明是指导内部堆积模式的关键,从而区分了关键的树枝状大分子性质,如密度、折射率和内部孔隙率。此外,这一发现为仅在 I 类观察到的单分子胶束包封(UME)行为提供了解释,而 II 类则没有。本文综述了早期实验证实了树枝状大分子支化细胞对称性对内部堆积特性的不可分割影响,首次出现了基于 I 类的 UME 行为实例,用于系统包封表征的核磁共振(NMR)方案,将这些原理应用于活性批准药物的增溶,工程树枝状大分子关键纳米级设计参数(CNDPs)以优化性能,并对基于树枝状大分子增溶原理在新兴生命科学、药物传递和纳米医学应用中的预期作用充满乐观。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bae/7226492/2809860910a7/biomolecules-10-00642-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验