Suppr超能文献

白细胞中伪足突出的连续体模型。

A continuum model of protrusion of pseudopod in leukocytes.

作者信息

Zhu C, Skalak R

机构信息

Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027.

出版信息

Biophys J. 1988 Dec;54(6):1115-37. doi: 10.1016/S0006-3495(88)83047-9.

Abstract

The morphology of human leukocytes, the biochemistry of actin polymerization, and the theory of continuum mechanics are used to model the pseudopod protrusion process of leukocytes. In the proposed model, the pseudopod is considered as a porous solid of F-actin network, the pores of which are full of aqueous solution. G-actin is considered as a "solute" transported by convection and diffusion in the fluid phase. The pseudopod grows as actin filaments elongate at their barbed ends at the tip of the pseudopod. The driving force of extension is hypothesized as being provided by the actin polymerization. It is assumed that elongation of actin filaments, powered by chemical energy liberated from the polymerization reaction, does mechanical work against opposing pressure on the membrane. This also gives rise to a pressure drop in the fluid phase at the tip of the pseudopod, which is formulated by an equation relating the work done by actin polymerization to the local state of pressure. The pressure gradient along the pseudopod drives the fluid filtration through the porous pseudopod according to Darcy's Law, which in turn brings more actin monomers to the growing tip. The main cell body serves as a reservoir of G-actin. A modified first-order equation is used to describe the kinetics of polymerization. The rate of pseudopod growth is modulated by regulatory proteins. A one-dimensional moving boundary problem based on the proposed mechanism has been constructed and approximate solutions have been obtained. Comparison of the solutions with experimental data shows that the model is compatible with available observations. The model is also applicable to growth of other cellular systems such as elongation of acrosomal process in sperm cells.

摘要

利用人类白细胞的形态学、肌动蛋白聚合的生物化学以及连续介质力学理论,对白细胞的伪足突出过程进行建模。在所提出的模型中,伪足被视为F - 肌动蛋白网络的多孔固体,其孔隙充满水溶液。G - 肌动蛋白被视为在液相中通过对流和扩散传输的“溶质”。伪足随着肌动蛋白丝在伪足尖端的带刺末端伸长而生长。延伸的驱动力被假设为由肌动蛋白聚合提供。假定由聚合反应释放的化学能驱动的肌动蛋白丝伸长,对膜上的反向压力做机械功。这也导致伪足尖端的液相中出现压降,该压降由一个将肌动蛋白聚合所做的功与局部压力状态相关联的方程来表述。沿着伪足的压力梯度根据达西定律驱动流体通过多孔伪足进行过滤,这反过来又将更多的肌动蛋白单体带到生长的尖端。细胞主体作为G - 肌动蛋白的储存库。使用一个修正的一阶方程来描述聚合动力学。伪足生长速率由调节蛋白调节。基于所提出的机制构建了一个一维移动边界问题,并获得了近似解。将解与实验数据进行比较表明,该模型与现有观测结果相符。该模型也适用于其他细胞系统的生长,如精子细胞顶体突起的伸长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6616/1330422/d9e1cbb48f77/biophysj00146-0140-a.jpg

相似文献

1
A continuum model of protrusion of pseudopod in leukocytes.
Biophys J. 1988 Dec;54(6):1115-37. doi: 10.1016/S0006-3495(88)83047-9.
2
One-dimensional steady continuum model of retraction of pseudopod in leukocytes.
J Biomech Eng. 1989 Feb;111(1):69-77. doi: 10.1115/1.3168342.
3
Mechanical models of pseudopod formation.
Blood Cells. 1993;19(2):389-97; discussion 398-9.
5
Passive deformations and active motions of leukocytes.
J Biomech Eng. 1990 Aug;112(3):295-302. doi: 10.1115/1.2891187.
7
Actin polymerization and pseudopod extension during amoeboid chemotaxis.
Cell Motil Cytoskeleton. 1988;10(1-2):77-90. doi: 10.1002/cm.970100113.
8
Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants.
Biophys J. 2004 Jul;87(1):688-95. doi: 10.1529/biophysj.103.036699.
10
Responses of tumor cell pseudopod protrusion to changes in medium osmolality.
J Cell Physiol. 1996 Apr;167(1):156-63. doi: 10.1002/(SICI)1097-4652(199604)167:1<156::AID-JCP18>3.0.CO;2-9.

引用本文的文献

1
G-actin diffusion is insufficient to achieve F-actin assembly in fast-treadmilling protrusions.
Biophys J. 2023 Sep 19;122(18):3816-3829. doi: 10.1016/j.bpj.2023.08.022. Epub 2023 Aug 28.
2
Eukaryotic Cell Dynamics from Crawlers to Swimmers.
Wiley Interdiscip Rev Comput Mol Sci. 2019 Jan-Feb;9(1). doi: 10.1002/wcms.1376. Epub 2018 Jul 19.
3
A comparison of computational models for eukaryotic cell shape and motility.
PLoS Comput Biol. 2012;8(12):e1002793. doi: 10.1371/journal.pcbi.1002793. Epub 2012 Dec 27.
5
Actin-myosin viscoelastic flow in the keratocyte lamellipod.
Biophys J. 2009 Oct 7;97(7):1853-63. doi: 10.1016/j.bpj.2009.07.020.
6
MULTISCALE TWO-DIMENSIONAL MODELING OF A MOTILE SIMPLE-SHAPED CELL.
Multiscale Model Simul. 2005;3(2):413-439. doi: 10.1137/04060370X.
7
Continuum model of cell adhesion and migration.
J Math Biol. 2009 Jan;58(1-2):135-61. doi: 10.1007/s00285-008-0179-x. Epub 2008 May 17.
8
Mathematics of cell motility: have we got its number?
J Math Biol. 2009 Jan;58(1-2):105-34. doi: 10.1007/s00285-008-0182-2. Epub 2008 May 7.
9
Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry.
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13343-8. doi: 10.1073/pnas.0705815104. Epub 2007 Aug 7.
10
Diffusion with attrition.
J Math Biol. 2006 Dec;53(6):889-903. doi: 10.1007/s00285-006-0029-7. Epub 2006 Aug 26.

本文引用的文献

1
MOLECULAR CHARACTERISTICS OF G-ADP ACTIN.
Arch Biochem Biophys. 1964 Sep;107:441-8. doi: 10.1016/0003-9861(64)90300-5.
2
Crystalline actin sheets: their structure and polymorphism.
J Cell Biol. 1981 Nov;91(2 Pt 1):340-51. doi: 10.1083/jcb.91.2.340.
3
Fluorescence photobleaching recovery in solutions of labeled actin.
Biophys J. 1981 Aug;35(2):351-64. doi: 10.1016/S0006-3495(81)84794-7.
4
Actin filaments elongate from their membrane-associated ends.
J Cell Biol. 1981 Aug;90(2):485-94. doi: 10.1083/jcb.90.2.485.
5
Polymerization and gelation of actin studied by fluorescence photobleaching recovery.
Biochemistry. 1982 Jul 20;21(15):3666-74. doi: 10.1021/bi00258a022.
6
Influence of physicochemical factors on rheology of human neutrophils.
Biophys J. 1982 Jul;39(1):101-6. doi: 10.1016/S0006-3495(82)84495-0.
7
The flexibility of F-actin.
Biophys Chem. 1980 Jun;11(3-4):443-6. doi: 10.1016/0301-4622(80)87021-9.
8
Mobility of cytoplasmic and membrane-associated actin in living cells.
Proc Natl Acad Sci U S A. 1982 Aug;79(15):4660-4. doi: 10.1073/pnas.79.15.4660.
9
Microfilament or microtubule assembly or disassembly against a force.
Proc Natl Acad Sci U S A. 1981 Sep;78(9):5613-7. doi: 10.1073/pnas.78.9.5613.
10
F actin assembly modulated by villin: Ca++-dependent nucleation and capping of the barbed end.
Cell. 1981 May;24(2):471-80. doi: 10.1016/0092-8674(81)90338-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验