Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic.
Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 61600, Brno, Czech Republic.
Sci Rep. 2020 Apr 24;10(1):6925. doi: 10.1038/s41598-020-63620-5.
Optofluidic devices combining optics and microfluidics have recently attracted attention for biomolecular analysis due to their high detection sensitivity. Here, we show a silicon chip with tubular microchannels buried inside the substrate featuring temperature gradient (∇T) along the microchannel. We set up an optical fluorescence system consisting of a power-modulated laser light source of 470 nm coupled to the microchannel serving as a light guide via optical fiber. Fluorescence was detected on the other side of the microchannel using a photomultiplier tube connected to an optical fiber via a fluorescein isothiocyanate filter. The PMT output was connected to a lock-in amplifier for signal processing. We performed a melting curve analysis of a short dsDNA - SYBR Green I complex with a known melting temperature (T) in a flow-through configuration without gradient to verify the functionality of the proposed detection system. We then used the segmented flow configuration and measured the fluorescence amplitude of a droplet exposed to ∇T of ≈ 2.31 °C mm, determining the heat transfer time as ≈ 554 ms. The proposed platform can be used as a fast and cost-effective system for performing either MCA of dsDNAs or for measuring protein unfolding for drug-screening applications.
光流控装置将光学和微流控结合在一起,由于其具有高检测灵敏度,因此最近引起了生物分子分析的关注。在这里,我们展示了一种具有管状微通道的硅芯片,该微通道的衬底内部埋有沿微通道的温度梯度(∇T)。我们建立了一个光学荧光系统,该系统由 470nm 的功率调制激光光源组成,通过光纤耦合到用作光导的微通道。使用连接到光纤的光电倍增管通过异硫氰酸荧光素滤光片在微通道的另一侧检测荧光。PMT 的输出连接到锁相放大器进行信号处理。我们在无梯度的流动配置中对具有已知熔点(T)的短 dsDNA-SYBR Green I 复合物进行了熔解曲线分析,以验证所提出的检测系统的功能。然后,我们使用分段流动配置并测量了暴露于≈2.31°C mm 的∇T 的液滴的荧光强度,确定传热时间约为 554ms。该平台可用于快速且具有成本效益的系统,用于执行 dsDNA 的 MCA 或用于测量药物筛选应用中蛋白质的解折叠。