Suppr超能文献

微流控中温度驱动液滴的动力学。

Dynamics of temperature-actuated droplets within microfluidics.

机构信息

Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada.

BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada.

出版信息

Sci Rep. 2019 Mar 7;9(1):3832. doi: 10.1038/s41598-019-40069-9.

Abstract

Characterizing the thermal behavior of dispersed droplets within microfluidic channels is crucial for different applications in lab-on-a-chip. In this paper, the physics of droplets volume during their transport over a heater is studied experimentally and numerically. The response of droplets to external heating is examined at temperature ranges of 25-90 °C and at different flow rates of the dispersed phase respect to the continuous flow. The results present a reliable prediction of the droplet volume and stability when heating is applied to the droplets at the downstream channel in a quite far distance from the droplets' ejection orifice. Increasing the ratio of flow rate resulted in larger droplets; for instance, the flow ratio of 0.25 produced drops with 40% larger diameter than the flow rate of 0.1. For every 10 °C increase in temperature of the droplets, the droplet diameter increased by about 5.7% and 4.2% for pure oil and oil with a surfactant, respectively. Also, the droplets showed a degree of instability during their transport over the heater at higher temperatures. Adding SPAN 20 surfactant improved the stability of the droplets at temperatures higher than 60 °C. The experimentally validated numerical model helped for systemic analysis of the influence of key temperature-dependence parameters (e.g. surface tension, density and viscosity of both phases) on controlling the volume and stability of droplets. Our findings supported to develop highly functional systems with a predetermined droplets performance under high temperatures up to 90 °C. This report provides a preliminary basis for enhancing the performance of droplet microfluidic systems for digital droplet polymerase chain reaction (ddPCR), continuous flow digital loop-mediated isothermal PCR (LAMP), and droplet-based antibiotic susceptibility testing.

摘要

在微流控通道中分散液滴的热行为特征对于芯片上实验室的不同应用至关重要。本文从实验和数值两方面研究了液滴在加热过程中的体积变化。在 25-90°C 的温度范围内,以及分散相相对于连续相的不同流速下,考察了液滴对外加热的响应。结果对在远离液滴喷射口的下游通道对液滴进行加热时液滴体积和稳定性进行了可靠的预测。增加流速比会导致液滴体积增大;例如,流速比为 0.25 时,液滴直径比流速比为 0.1 时大 40%。液滴温度每升高 10°C,液滴直径约增加 5.7%和 4.2%,分别用于纯油和含表面活性剂的油。此外,液滴在加热器上传输过程中会在较高温度下表现出一定程度的不稳定性。添加 SPAN 20 表面活性剂可以提高温度高于 60°C 时液滴的稳定性。经过实验验证的数值模型有助于系统分析关键温度相关参数(例如,两相的表面张力、密度和粘度)对控制液滴体积和稳定性的影响。我们的研究结果支持在高达 90°C 的高温下开发具有预定液滴性能的高度功能化系统。本报告为增强数字液滴聚合酶链式反应(ddPCR)、连续流数字环介导等温扩增(LAMP)和基于液滴的抗生素药敏试验等液滴微流控系统的性能提供了初步基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4c3/6405956/2f3c68dd323a/41598_2019_40069_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验