Suppr超能文献

加权回归分析校正纵向研究中信息监测时间和混杂因素的影响。

Weighted regression analysis to correct for informative monitoring times and confounders in longitudinal studies.

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada.

出版信息

Biometrics. 2021 Mar;77(1):162-174. doi: 10.1111/biom.13285. Epub 2020 May 12.

Abstract

We address estimation of the marginal effect of a time-varying binary treatment on a continuous longitudinal outcome in the context of observational studies using electronic health records, when the relationship of interest is confounded, mediated, and further distorted by an informative visit process. We allow the longitudinal outcome to be recorded only sporadically and assume that its monitoring timing is informed by patients' characteristics. We propose two novel estimators based on linear models for the mean outcome that incorporate an adjustment for confounding and informative monitoring process through generalized inverse probability of treatment weights and a proportional intensity model, respectively. We allow for a flexible modeling of the intercept function as a function of time. Our estimators have closed-form solutions, and their asymptotic distributions can be derived. Extensive simulation studies show that both estimators outperform standard methods such as the ordinary least squares estimator or estimators that only account for informative monitoring or confounders. We illustrate our methods using data from the Add Health study, assessing the effect of depressive mood on weight in adolescents.

摘要

我们针对电子健康记录中的观察性研究,当感兴趣的关系受到混杂、中介和信息性就诊过程进一步扭曲时,讨论了对随时间变化的二分类处理对连续纵向结局的边际效应的估计。我们允许纵向结局仅偶尔记录,并假设其监测时间由患者的特征决定。我们提出了两种基于线性模型的新估计量,用于平均结局,通过广义逆处理权重和比例强度模型分别调整混杂和信息性监测过程。我们允许截距函数作为时间的函数进行灵活建模。我们的估计量具有闭式解,并且可以推导出其渐近分布。广泛的模拟研究表明,这两种估计量都优于标准方法,例如普通最小二乘估计量或仅考虑信息性监测或混杂因素的估计量。我们使用来自 Add Health 研究的数据来说明我们的方法,评估抑郁情绪对青少年体重的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验