Suppr超能文献

在受协变量驱动观测的观察性研究中,对边缘结构模型进行多重稳健估计。

Multiply robust estimation of marginal structural models in observational studies subject to covariate-driven observations.

机构信息

Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.

Department of Statistics, North Carolina State University, Raleigh, NC 27607, United States.

出版信息

Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae065.

Abstract

Electronic health records and other sources of observational data are increasingly used for drawing causal inferences. The estimation of a causal effect using these data not meant for research purposes is subject to confounding and irregularly-spaced covariate-driven observation times affecting the inference. A doubly-weighted estimator accounting for these features has previously been proposed that relies on the correct specification of two nuisance models used for the weights. In this work, we propose a novel consistent multiply robust estimator and demonstrate analytically and in comprehensive simulation studies that it is more flexible and more efficient than the only alternative estimator proposed for the same setting. It is further applied to data from the Add Health study in the United States to estimate the causal effect of therapy counseling on alcohol consumption in American adolescents.

摘要

电子健康记录和其他观察性数据源越来越多地被用于得出因果推论。使用这些并非专为研究目的而设的数据来估计因果效应,可能会受到混杂因素和不规则间隔的协变量驱动观察时间的影响,从而影响推论。先前已提出一种使用这些数据估计因果效应的双加权估计量,该估计量依赖于用于加权的两个干扰模型的正确指定。在这项工作中,我们提出了一种新颖的一致多重稳健估计量,并通过分析和全面的模拟研究证明,与为同一设置提出的唯一替代估计量相比,它更灵活、更有效。我们还将其应用于来自美国的 Add Health 研究的数据,以估计治疗咨询对美国青少年饮酒的因果影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f004/11250490/391cd68f7f77/ujae065fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验