Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.
Department of Statistics, North Carolina State University, Raleigh, NC 27607, United States.
Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae065.
Electronic health records and other sources of observational data are increasingly used for drawing causal inferences. The estimation of a causal effect using these data not meant for research purposes is subject to confounding and irregularly-spaced covariate-driven observation times affecting the inference. A doubly-weighted estimator accounting for these features has previously been proposed that relies on the correct specification of two nuisance models used for the weights. In this work, we propose a novel consistent multiply robust estimator and demonstrate analytically and in comprehensive simulation studies that it is more flexible and more efficient than the only alternative estimator proposed for the same setting. It is further applied to data from the Add Health study in the United States to estimate the causal effect of therapy counseling on alcohol consumption in American adolescents.
电子健康记录和其他观察性数据源越来越多地被用于得出因果推论。使用这些并非专为研究目的而设的数据来估计因果效应,可能会受到混杂因素和不规则间隔的协变量驱动观察时间的影响,从而影响推论。先前已提出一种使用这些数据估计因果效应的双加权估计量,该估计量依赖于用于加权的两个干扰模型的正确指定。在这项工作中,我们提出了一种新颖的一致多重稳健估计量,并通过分析和全面的模拟研究证明,与为同一设置提出的唯一替代估计量相比,它更灵活、更有效。我们还将其应用于来自美国的 Add Health 研究的数据,以估计治疗咨询对美国青少年饮酒的因果影响。