Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC.
Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC.
Ann Epidemiol. 2022 Oct;74:75-83. doi: 10.1016/j.annepidem.2022.07.011. Epub 2022 Aug 5.
To demonstrate improvements in the precision of inverse probability-weighted estimators by use of auxiliary variables, i.e., determinants of the outcome that are independent of treatment, missingness or selection.
First with simulated data, and then with public data from the National Health and Nutrition Examination Survey (NHANES), we estimated the mean of a continuous outcome using inverse probability weights to account for informative missingness. We assessed gains in precision resulting from the inclusion of auxiliary variables in the model for the weights. We compared the performance of robust and nonparametric bootstrap variance estimators in this setting.
We found that the inclusion of auxiliary variables reduced the empirical variance of inverse probability-weighted estimators. However, that reduction was not captured in standard errors computed using the robust variance estimator, which is widely used in weighted analyses due to the non-independence of weighted observations. In contrast, a nonparametric bootstrap estimator properly captured the precision gain.
Epidemiologists can leverage auxiliary data to improve the precision of weighted estimators by using bootstrap variance estimation, or a closed-form variance estimator that properly accounts for the estimation of the weights, in place of the standard robust variance estimator.
通过使用辅助变量(即与治疗、缺失或选择无关的结果决定因素)来提高逆概率加权估计量的精度。
首先使用模拟数据,然后使用来自国家健康和营养检查调查(NHANES)的公共数据,我们使用逆概率权重估计连续结果的平均值,以解释信息缺失。我们评估了在权重模型中纳入辅助变量对精度的提高。我们在这种情况下比较了稳健和非参数自举方差估计器的性能。
我们发现,纳入辅助变量减少了逆概率加权估计量的经验方差。然而,这一减少并未被稳健方差估计器计算的标准误差所捕捉,由于加权观测的非独立性,稳健方差估计器在加权分析中被广泛使用。相比之下,非参数自举估计器恰当地捕捉到了精度的提高。
由于加权观测的非独立性, 因此, 由于加权观测的非独立性, 流行病学家长可以利用辅助数据, 通过使用自举方差估计或适当考虑权重估计的闭形式方差估计器, 而不是标准稳健方差估计器, 来提高加权估计量的精度。