Suppr超能文献

利用辅助数据提高逆概率加权分析的精度。

Leveraging auxiliary data to improve precision in inverse probability-weighted analyses.

机构信息

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC.

出版信息

Ann Epidemiol. 2022 Oct;74:75-83. doi: 10.1016/j.annepidem.2022.07.011. Epub 2022 Aug 5.

Abstract

PURPOSE

To demonstrate improvements in the precision of inverse probability-weighted estimators by use of auxiliary variables, i.e., determinants of the outcome that are independent of treatment, missingness or selection.

METHODS

First with simulated data, and then with public data from the National Health and Nutrition Examination Survey (NHANES), we estimated the mean of a continuous outcome using inverse probability weights to account for informative missingness. We assessed gains in precision resulting from the inclusion of auxiliary variables in the model for the weights. We compared the performance of robust and nonparametric bootstrap variance estimators in this setting.

RESULTS

We found that the inclusion of auxiliary variables reduced the empirical variance of inverse probability-weighted estimators. However, that reduction was not captured in standard errors computed using the robust variance estimator, which is widely used in weighted analyses due to the non-independence of weighted observations. In contrast, a nonparametric bootstrap estimator properly captured the precision gain.

CONCLUSIONS

Epidemiologists can leverage auxiliary data to improve the precision of weighted estimators by using bootstrap variance estimation, or a closed-form variance estimator that properly accounts for the estimation of the weights, in place of the standard robust variance estimator.

摘要

目的

通过使用辅助变量(即与治疗、缺失或选择无关的结果决定因素)来提高逆概率加权估计量的精度。

方法

首先使用模拟数据,然后使用来自国家健康和营养检查调查(NHANES)的公共数据,我们使用逆概率权重估计连续结果的平均值,以解释信息缺失。我们评估了在权重模型中纳入辅助变量对精度的提高。我们在这种情况下比较了稳健和非参数自举方差估计器的性能。

结果

我们发现,纳入辅助变量减少了逆概率加权估计量的经验方差。然而,这一减少并未被稳健方差估计器计算的标准误差所捕捉,由于加权观测的非独立性,稳健方差估计器在加权分析中被广泛使用。相比之下,非参数自举估计器恰当地捕捉到了精度的提高。

结论

由于加权观测的非独立性, 因此, 由于加权观测的非独立性, 流行病学家长可以利用辅助数据, 通过使用自举方差估计或适当考虑权重估计的闭形式方差估计器, 而不是标准稳健方差估计器, 来提高加权估计量的精度。

相似文献

9
Variance estimation in inverse probability weighted Cox models.逆概率加权Cox模型中的方差估计
Biometrics. 2021 Sep;77(3):1101-1117. doi: 10.1111/biom.13332. Epub 2020 Aug 3.
10
On variance estimation of target population created by inverse probability weighting.基于逆概率加权法的目标人群方差估计
J Biopharm Stat. 2024 Aug;34(5):661-679. doi: 10.1080/10543406.2023.2244593. Epub 2023 Aug 24.

本文引用的文献

1
Using simulation studies to evaluate statistical methods.运用模拟研究评估统计方法。
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
3
Are all biases missing data problems?所有偏差都是数据缺失问题吗?
Curr Epidemiol Rep. 2015 Sep 1;2(3):162-171. doi: 10.1007/s40471-015-0050-8. Epub 2015 Jul 12.
6
Variance estimation for stratified propensity score estimators.分层倾向评分估计量的方差估计。
Stat Med. 2012 Jul 10;31(15):1617-32. doi: 10.1002/sim.4504. Epub 2012 Feb 24.
7
Review of inverse probability weighting for dealing with missing data.逆概率加权法处理缺失数据的综述。
Stat Methods Med Res. 2013 Jun;22(3):278-95. doi: 10.1177/0962280210395740. Epub 2011 Jan 10.
8
Constructing inverse probability weights for marginal structural models.构建边际结构模型的逆概率权重。
Am J Epidemiol. 2008 Sep 15;168(6):656-64. doi: 10.1093/aje/kwn164. Epub 2008 Aug 5.
9
Variable selection for propensity score models.倾向得分模型的变量选择
Am J Epidemiol. 2006 Jun 15;163(12):1149-56. doi: 10.1093/aje/kwj149. Epub 2006 Apr 19.
10
Marginal structural models as a tool for standardization.边际结构模型作为一种标准化工具。
Epidemiology. 2003 Nov;14(6):680-6. doi: 10.1097/01.EDE.0000081989.82616.7d.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验