Suppr超能文献

基于明胶的微带状水凝胶在很宽的硬度范围内支持 MSC 的健壮成骨。

Gelatin-Based Microribbon Hydrogels Support Robust MSC Osteogenesis across a Broad Range of Stiffness.

机构信息

Program of Stem Cell Biology and Regenerative Medicine, Stanford University, 300 Pasteur Drive, Edward Building Room 114, Stanford, California94305, United States.

Department of Chemical Engineering, Stanford University Shriram Center, Room 129, Stanford, California94305, United States.

出版信息

ACS Biomater Sci Eng. 2020 Jun 8;6(6):3454-3463. doi: 10.1021/acsbiomaterials.9b01792. Epub 2020 May 27.

Abstract

Scaffold macroporosity has been shown to be critical for promoting bone regeneration. Although injectable materials are preferred for minimally invasive delivery, conventional macroporous scaffolds were not injectable and do not support homogeneous cell encapsulation. We recently reported a gelatin-based microribbon (μRB) scaffold that offers macroporosity while also supporting homogeneous cell encapsulation. Compared to conventional gelatin hydrogels, macroporous gelatin μRB scaffolds demonstrated great advantage in enhancing mesenchymal stem cell (MSC)-based cartilage formation. However, whether gelatin-based μRBs support MSC osteogenesis and bone formation remains unknown. The goal of this study is to assess the potential of gelatin-based μRBs for supporting MSC-based osteogenesis and bone formation in vitro. Given recent evidence from the literature that osteogenesis is sensitive to substrate stiffness, we further investigate how varying μRB stiffness modulates MSC osteogenesis. We first determine the maximal stiffness range of gelatin μRBs that can be fabricated (13-57 kPa), which supports both retention of μRB shape and macroporosity within scaffolds after inter-cross-linking. Interestingly, varying μRB stiffness across a broad range of stiffness did not significantly impact osteogenesis, with all groups supporting upregulation of bone markers and extensive collagen deposition. All gelatin μRBs also supported a comparable level of cell spreading and upregulation of mechanosensing markers. However, soft μRB (13 kPa) scaffolds did not maintain structural integrity and condensed into a pellet over time. Both intermediate and stiff gelatin μRB-based scaffolds maintained their integrity and supported robust bone formation, leading to a more than 10-fold increase in the compressive moduli of engineered bone after 5 weeks of culture in osteogenic media. Incorporating hydroxyapatite (HA) nanoparticle coating onto the gelatin μRB surface further accelerated the maturation of MSCs into osteoblasts and mineralization. Together, these results validate that gelatin μRBs can support MSC osteogenesis across a broad range of stiffness and offers an injectable macroporous scaffold for enhancing stem-cell-based bone regeneration.

摘要

支架的大孔率对于促进骨再生至关重要。尽管可注射材料更适合微创输送,但传统的大孔支架不可注射,也不支持细胞均匀包封。我们最近报道了一种基于明胶的微带(μRB)支架,它提供了大孔率,同时还支持细胞均匀包封。与传统的明胶水凝胶相比,大孔明胶 μRB 支架在增强间充质干细胞(MSC)软骨形成方面具有很大优势。然而,基于明胶的 μRB 是否支持 MSC 成骨和成骨形成仍不清楚。本研究的目的是评估基于明胶的 μRB 在体外支持 MSC 成骨和成骨形成的潜力。鉴于文献中有最近的证据表明成骨对基质刚度敏感,我们进一步研究了改变 μRB 刚度如何调节 MSC 成骨。我们首先确定了可以制造的明胶 μRB 的最大刚度范围(13-57 kPa),该范围支持交联后支架内 μRB 形状和大孔率的保留。有趣的是,在广泛的刚度范围内改变 μRB 刚度并没有显著影响成骨,所有组都支持骨标志物的上调和大量胶原蛋白的沉积。所有明胶 μRB 还支持细胞铺展和机械敏感标志物的上调。然而,软 μRB(13 kPa)支架随时间推移不能保持结构完整性并凝聚成小球。中间和硬明胶 μRB 基支架保持其完整性,并支持强大的骨形成,在成骨培养基中培养 5 周后,工程骨的压缩模量增加了 10 多倍。在明胶 μRB 表面涂覆羟基磷灰石(HA)纳米颗粒进一步加速了 MSC 向成骨细胞的成熟和矿化。总之,这些结果验证了明胶 μRB 可以在广泛的刚度范围内支持 MSC 成骨,并提供了一种可注射的大孔支架,用于增强基于干细胞的骨再生。

相似文献

引用本文的文献

本文引用的文献

3
The development of collagen based composite scaffolds for bone regeneration.用于骨再生的基于胶原蛋白的复合支架的研发。
Bioact Mater. 2017 Sep 18;3(1):129-138. doi: 10.1016/j.bioactmat.2017.08.004. eCollection 2018 Mar.
5
Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.骨组织工程支架:现状与新展望
Mater Sci Eng C Mater Biol Appl. 2017 Sep 1;78:1246-1262. doi: 10.1016/j.msec.2017.05.017. Epub 2017 May 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验