Suppr超能文献

通过一锅法合成 GO/金属有机骨架复合材料将酶固定在石墨氧化物 (GO) 表面用于大底物生物催化。

Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal-Organic Framework Composites for Large-Substrate Biocatalysis.

机构信息

Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States.

Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States.

出版信息

ACS Appl Mater Interfaces. 2020 May 20;12(20):23119-23126. doi: 10.1021/acsami.0c04101. Epub 2020 May 7.

Abstract

Although enzyme immobilization has improved many areas, biocatalysis involving large-size substrates is still challenging for immobilization platform design because of the protein damage under the often "harsh" reaction conditions required for these reactions. Our recent efforts indicate the potential of using Metal-Organic Frameworks (MOFs) to partially confine enzymes on the surface of MOF-based composites while offering sufficient substrate contact. Still, improvements are required to expand the feasible pH range and the efficiency of contacting substrates. In this contribution, we discovered that Zeolitic Imidazolate Framework (ZIF) and a new calcium-carboxylate based MOF (CaBDC) can both be coprecipitated with a model large-substrate enzyme, lysozyme (lys), to anchor the enzyme on the surface of graphite oxide (GO). We observed lys activity against its native substrate, bacterial cell walls, indicating lys was confined on composite surface. Remarkably, lys@GO/CaBDC displayed a stronger catalytic efficiency at pH 6.2 as compared to pH 7.4, indicating CaBDC is a good candidate for biocatalysis under acidic conditions as compared to ZIFs which disassemble under pH < 7. Furthermore, to understand the regions of lys being exposed to the reaction medium, we carried out a site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy study. Our data showed a preferential orientation of lys in GO/ZIF composite, whereas a random orientation in GO/CaBDC. This is the first report on immobilizing solution-state large-substrate enzymes on GO surface using two different MOFs via one-pot synthesis. These platforms can be generalized to other large-substrate enzymes to carry out catalysis under the optimal buffer/pH conditions. The orientation of enzyme at the molecular level on composite surfaces is critical for guiding the rational design of new composites.

摘要

尽管酶固定化已经改善了许多领域,但涉及大尺寸底物的生物催化仍然是固定化平台设计的挑战,因为这些反应所需的反应条件往往很苛刻,会导致蛋白质损伤。我们最近的研究表明,使用金属有机骨架(MOFs)在 MOF 基复合材料的表面部分限制酶,同时提供足够的底物接触,这具有潜在的可能性。然而,仍需要改进以扩大可行的 pH 范围和接触底物的效率。在本研究中,我们发现沸石咪唑酯骨架(ZIF)和一种新的基于钙的羧酸 MOF(CaBDC)都可以与模型大底物酶溶菌酶(lys)共沉淀,从而将酶锚定在氧化石墨(GO)的表面。我们观察到 lys 对其天然底物细菌细胞壁的活性,表明 lys 被限制在复合表面上。值得注意的是,与 pH 7.4 相比,lys@GO/CaBDC 在 pH 6.2 下表现出更强的催化效率,这表明与在 pH < 7 下会解体的 ZIF 相比,CaBDC 是酸性条件下生物催化的良好候选物。此外,为了了解 lys 暴露于反应介质的区域,我们进行了定点自旋标记(SDSL)电子顺磁共振(EPR)光谱研究。我们的数据表明,lys 在 GO/ZIF 复合材料中具有优先取向,而在 GO/CaBDC 中则具有随机取向。这是首次报道使用两种不同的 MOFs 通过一锅合成将溶液状态的大底物酶固定在 GO 表面上。这些平台可以推广到其他大底物酶,以在最佳缓冲液 /pH 条件下进行催化。酶在复合表面上的分子水平取向对于指导新复合材料的合理设计至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验