Li Gaili, Yuan Yongna, Zhang Ruisheng
School of Information science and Engineering, Lanzhou University, lanzhou, 730000, China.
Interdiscip Sci. 2025 Jun;17(2):257-276. doi: 10.1007/s12539-024-00644-9. Epub 2024 Nov 14.
The investigation of molecular interactions between ligands and their target molecules is becoming more significant as protein structure data continues to develop. In this study, we introduce PLA-STGCNnet, a deep fusion spatial-temporal graph neural network designed to study protein-ligand interactions based on the 3D structural data of protein-ligand complexes. Unlike 1D protein sequences or 2D ligand graphs, the 3D graph representation offers a more precise portrayal of the complex interactions between proteins and ligands. Research studies have shown that our fusion model, PLA-STGCNnet, outperforms individual algorithms in accurately predicting binding affinity. The advantage of a fusion model is the ability to fully combine the advantages of multiple different models and improve overall performance by combining their features and outputs. Our fusion model shows satisfactory performance on different data sets, which proves its generalization ability and stability. The fusion-based model showed good performance in protein-ligand affinity prediction, and we successfully applied the model to drug screening. Our research underscores the promise of fusion spatial-temporal graph neural networks in addressing complex challenges in protein-ligand affinity prediction. The Python scripts for implementing various model components are accessible at https://github.com/ligaili01/PLA-STGCN.
随着蛋白质结构数据的不断发展,对配体与其靶分子之间分子相互作用的研究变得越来越重要。在本研究中,我们引入了PLA - STGCNnet,这是一种深度融合的时空图神经网络,旨在基于蛋白质 - 配体复合物的三维结构数据来研究蛋白质 - 配体相互作用。与一维蛋白质序列或二维配体图不同,三维图表示能够更精确地描绘蛋白质与配体之间的复杂相互作用。研究表明,我们的融合模型PLA - STGCNnet在准确预测结合亲和力方面优于单个算法。融合模型的优势在于能够充分结合多种不同模型的优点,并通过组合它们的特征和输出提高整体性能。我们的融合模型在不同数据集上表现出令人满意的性能,这证明了其泛化能力和稳定性。基于融合的模型在蛋白质 - 配体亲和力预测中表现良好,并且我们成功地将该模型应用于药物筛选。我们的研究强调了融合时空图神经网络在解决蛋白质 - 配体亲和力预测中的复杂挑战方面的前景。实现各种模型组件的Python脚本可在https://github.com/ligaili01/PLA - STGCN获取。