Suppr超能文献

微生物组作为果蝇体内平衡和疾病的调节剂。

Microbiomes as modulators of Drosophila melanogaster homeostasis and disease.

机构信息

Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.

Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06296, USA.

出版信息

Curr Opin Insect Sci. 2020 Jun;39:84-90. doi: 10.1016/j.cois.2020.03.003. Epub 2020 Mar 20.

Abstract

Drosophila melanogaster harbors a simple gut microbial community, or microbiome, that regulates several facets of its physiology. As a result, the host employs multiple mechanisms of maintaining control over its microbiome in an effort to promote overall organismal homeostasis. Perturbations to the balance between microbiome and host can result in states of instability or disease, making maintenance of microbial homeostasis a fundamental physiologic aspect of D. melanogaster biology. While the interactions between microbes and their hosts can be direct, particularly in the context of immunity and gut renewal, effects resulting from indirect interactions, such as those between microbiota members, can be equally as important. This review highlights the major ways, in which D. melanogaster regulates microbial homeostasis, the consequences of disruptions to homeostasis, and the different mechanisms, by which the microbiome interacts with its host.

摘要

黑腹果蝇拥有一个简单的肠道微生物群落,即微生物组,它调节着果蝇生理机能的多个方面。因此,宿主采用多种机制来控制其微生物组,以促进整体生物体内稳态。微生物组和宿主之间平衡的破坏会导致不稳定或疾病状态,使微生物体内稳态的维持成为果蝇生物学的一个基本生理方面。虽然微生物与其宿主之间的相互作用可以是直接的,特别是在免疫和肠道更新的背景下,但间接相互作用(例如微生物群落成员之间的相互作用)的影响同样重要。这篇综述强调了黑腹果蝇调节微生物体内稳态的主要方式、体内稳态失调的后果,以及微生物组与其宿主相互作用的不同机制。

相似文献

1
4
Microbiome interactions shape host fitness.微生物组相互作用塑造宿主适应性。
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E11951-E11960. doi: 10.1073/pnas.1809349115. Epub 2018 Dec 3.
7
Gut microbiomes and reproductive isolation in .肠道微生物组与生殖隔离。
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12767-12772. doi: 10.1073/pnas.1708345114. Epub 2017 Nov 6.
8
How commensal microbes shape the physiology of Drosophila melanogaster.共生微生物如何塑造黑腹果蝇的生理学特性。
Curr Opin Insect Sci. 2020 Oct;41:92-99. doi: 10.1016/j.cois.2020.08.002. Epub 2020 Aug 14.
9
The Drosophila model for microbiome research.果蝇模型在微生物组研究中的应用。
Lab Anim (NY). 2018 Jun;47(6):157-164. doi: 10.1038/s41684-018-0065-0. Epub 2018 May 23.

引用本文的文献

1
Identification of an strain as a new mosquito pathogen.将一种菌株鉴定为一种新的蚊子病原体。
Front Cell Infect Microbiol. 2025 Aug 12;15:1649545. doi: 10.3389/fcimb.2025.1649545. eCollection 2025.
4
symbionts in infection: when a friend becomes an enemy.感染中的共生体:当朋友变成敌人时。
Infect Immun. 2025 May 13;93(5):e0051124. doi: 10.1128/iai.00511-24. Epub 2025 Apr 2.
9
Recent trends in insect gut immunity.昆虫肠道免疫的最新趋势。
Front Immunol. 2023 Dec 18;14:1272143. doi: 10.3389/fimmu.2023.1272143. eCollection 2023.

本文引用的文献

3
Pattern recognition receptors in Drosophila immune responses.果蝇免疫反应中的模式识别受体。
Dev Comp Immunol. 2020 Jan;102:103468. doi: 10.1016/j.dci.2019.103468. Epub 2019 Aug 17.
10
Commensal pathogen competition impacts host viability.共生病原体竞争影响宿主生存能力。
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):7099-7104. doi: 10.1073/pnas.1802165115. Epub 2018 Jun 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验