Suppr超能文献

肠道细菌共生关系的代谢基础及其对宿主的影响。

Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Host.

机构信息

Department of Biological Sciences, State University of New York at Oswego, Oswego, New York, USA.

Department of Biological Sciences, State University of New York at Oswego, Oswego, New York, USA

出版信息

Appl Environ Microbiol. 2019 Jan 9;85(2). doi: 10.1128/AEM.01882-18. Print 2019 Jan 15.

Abstract

Interactions between species shape the formation and function of microbial communities. In the gut microbiota of animals, cross-feeding of metabolites between microbes can enhance colonization and influence host physiology. We examined a mutually beneficial interaction between two bacteria isolated from the gut microbiota of , i.e., and After developing an coculture assay, we utilized a genetic screen to identify genes required for enhanced growth with The screen, and subsequent genetic analyses, showed that the gene encoding pyruvate phosphate dikinase () is required for to benefit fully from coculture. By testing strains with mutations in a range of metabolic genes, we provide evidence that can utilize multiple fermentation products of Mutualism between the bacteria affects gnotobiotic ; flies associated with and showed >1,000-fold increases in bacterial cell density and significantly lower triglyceride storage than monocolonized flies. Mutation of decreased density in flies cocolonized with , consistent with the model in which employs gluconeogenesis to assimilate fermentation products as a source of carbon We propose that cross-feeding between these groups is a common feature of microbiota in The digestive tracts of animals are home to a community of microorganisms, the gut microbiota, which affects the growth, development, and health of the host. Interactions among microbes in this inner ecosystem can influence which species colonize the gut and can lead to changes in host physiology. We investigated a mutually beneficial interaction between two bacterial species from the gut microbiota of fruit flies. By coculturing the bacteria , we were able to identify a metabolic gene required for the bacteria to grow better together than they do separately. Our data suggest that one species consumes the waste products of the other, leading to greater productivity of the microbial community and modifying the nutrients available to the host. This study provides a starting point for investigating how these and other bacteria mutually benefit by sharing metabolites and for determining the impact of mutualism on host health.

摘要

物种间的相互作用塑造了微生物群落的形成和功能。在动物的肠道微生物群中,微生物之间代谢物的交叉喂养可以增强定植并影响宿主生理。我们研究了两种从果蝇肠道微生物群中分离出的细菌之间互利的相互作用,即 和 。在开发了一种 共培养测定法后,我们利用遗传筛选来鉴定增强与 共生时生长所必需的 基因。该筛选以及随后的遗传分析表明,编码丙酮酸磷酸二激酶()的基因对于 充分受益于共培养是必需的。通过测试一系列代谢基因发生突变的菌株,我们提供了证据表明 可以利用 的多种发酵产物。细菌之间的互利共生会影响无菌的;与 和 相关的苍蝇表现出细菌细胞密度增加了 >1000 倍,并且甘油三酸酯储存量明显低于单定植的苍蝇。与 共定植时,突变降低了 的密度,这与模型一致,即 利用糖异生将 发酵产物作为碳源同化。我们提出,这些群体之间的交叉喂养是 微生物群的一个共同特征。动物的消化道是微生物群落的家园,即肠道微生物群,它会影响宿主的生长、发育和健康。这个内部生态系统中的微生物相互作用会影响哪些物种定植在肠道中,并导致宿主生理发生变化。我们研究了来自果蝇肠道微生物群的两种细菌之间互利的相互作用。通过共培养这两种细菌,我们能够鉴定出一种代谢基因,该基因对于细菌在一起生长比单独生长更好是必需的。我们的数据表明,一种细菌消耗另一种细菌的废物,导致微生物群落的生产力更高,并改变了宿主可利用的营养物质。这项研究为研究这些和其他细菌如何通过共享代谢物而相互受益以及确定共生对宿主健康的影响提供了一个起点。

相似文献

1
Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Host.
Appl Environ Microbiol. 2019 Jan 9;85(2). doi: 10.1128/AEM.01882-18. Print 2019 Jan 15.
2
A Functional Analysis of the Purine Salvage Pathway in Acetobacter fabarum.
J Bacteriol. 2022 Jul 19;204(7):e0004122. doi: 10.1128/jb.00041-22. Epub 2022 Jun 13.
3
Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster.
Appl Environ Microbiol. 2014 Jan;80(2):788-96. doi: 10.1128/AEM.02742-13. Epub 2013 Nov 15.
4
Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria.
PLoS Biol. 2018 Jul 5;16(7):e2005710. doi: 10.1371/journal.pbio.2005710. eCollection 2018 Jul.
5
Bacterial Methionine Metabolism Genes Influence Drosophila melanogaster Starvation Resistance.
Appl Environ Microbiol. 2018 Aug 17;84(17). doi: 10.1128/AEM.00662-18. Print 2018 Sep 1.
6
How gut microbiome interactions affect nutritional traits of .
J Exp Biol. 2020 Oct 13;223(Pt 19):jeb227843. doi: 10.1242/jeb.227843.
7
in the gut microbiota buffers against host metabolic impacts of dietary preservative formula and batch variation in dietary yeast.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0016523. doi: 10.1128/aem.00165-23. Epub 2023 Oct 6.
8
The importance of being persistent: The first true resident gut symbiont in Drosophila.
PLoS Biol. 2018 Aug 2;16(8):e2006945. doi: 10.1371/journal.pbio.2006945. eCollection 2018 Aug.
10
A gut microbial factor modulates locomotor behaviour in Drosophila.
Nature. 2018 Nov;563(7731):402-406. doi: 10.1038/s41586-018-0634-9. Epub 2018 Oct 24.

引用本文的文献

1
as a model system for studying the effects of porcine rotavirus on intestinal immunity.
Front Cell Infect Microbiol. 2025 Jul 28;15:1621846. doi: 10.3389/fcimb.2025.1621846. eCollection 2025.
2
Microbiome composition shapes temperature tolerance in a Hawaiian picture-winged .
bioRxiv. 2025 Jun 7:2025.06.03.657679. doi: 10.1101/2025.06.03.657679.
3
Alzheimer's disease and gut-brain axis: as a model.
Front Neurosci. 2025 Feb 4;19:1543826. doi: 10.3389/fnins.2025.1543826. eCollection 2025.
5
Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges.
Insects. 2024 Aug 13;15(8):611. doi: 10.3390/insects15080611.
6
The species and abundance of gut bacteria both positively impact Phortica okadai behavior.
Parasit Vectors. 2024 May 11;17(1):217. doi: 10.1186/s13071-024-06297-3.
8
Microbiome-derived acidity protects against microbial invasion in Drosophila.
Cell Rep. 2024 Apr 23;43(4):114087. doi: 10.1016/j.celrep.2024.114087. Epub 2024 Apr 6.
9
as a model to study polymicrobial synergy and dysbiosis.
Front Cell Infect Microbiol. 2023 Dec 21;13:1279380. doi: 10.3389/fcimb.2023.1279380. eCollection 2023.
10
Immunometabolic regulation during the presence of microorganisms and parasitoids in insects.
Front Immunol. 2023 Sep 25;14:905467. doi: 10.3389/fimmu.2023.905467. eCollection 2023.

本文引用的文献

1
Bacterial Methionine Metabolism Genes Influence Drosophila melanogaster Starvation Resistance.
Appl Environ Microbiol. 2018 Aug 17;84(17). doi: 10.1128/AEM.00662-18. Print 2018 Sep 1.
2
Deciphering microbial interactions in synthetic human gut microbiome communities.
Mol Syst Biol. 2018 Jun 21;14(6):e8157. doi: 10.15252/msb.20178157.
3
The Gut Microbiota Provisions Thiamine to Its Host.
mBio. 2018 Mar 6;9(2):e00155-18. doi: 10.1128/mBio.00155-18.
6
Drosophila Perpetuates Nutritional Mutualism by Promoting the Fitness of Its Intestinal Symbiont Lactobacillus plantarum.
Cell Metab. 2018 Feb 6;27(2):362-377.e8. doi: 10.1016/j.cmet.2017.11.011. Epub 2017 Dec 28.
7
Disentangling metabolic functions of bacteria in the honey bee gut.
PLoS Biol. 2017 Dec 12;15(12):e2003467. doi: 10.1371/journal.pbio.2003467. eCollection 2017 Dec.
8
D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition.
Nat Microbiol. 2017 Dec;2(12):1635-1647. doi: 10.1038/s41564-017-0038-x. Epub 2017 Oct 9.
9
Community structure follows simple assembly rules in microbial microcosms.
Nat Ecol Evol. 2017 Mar 27;1(5):109. doi: 10.1038/s41559-017-0109.
10
Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila.
Curr Biol. 2017 Aug 7;27(15):2397-2404.e4. doi: 10.1016/j.cub.2017.07.022. Epub 2017 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验