Zhang Bo, Peng Xiangfeng, Wang Zhao
National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Nanomaterials (Basel). 2020 Apr 23;10(4):805. doi: 10.3390/nano10040805.
Composites of g-CN/TiO were one-step prepared using electron impact with dielectric barrier discharge (DBD) plasma as the electron source. Due to the low operation temperature, TiO by the plasma method shows higher specific surface area and smaller particle size than that prepared via conventional calcination. Most interestingly, electron impact produces more oxygen vacancy on TiO, which facilitates the recombination and formation of heterostructure of g-CN/TiO. The composites have higher light absorption capacity and lower charge recombination efficiency. g-CN/TiO by plasma can produce hydrogen at a rate of 219.9 μmol·g·h and completely degrade Rhodamine B (20mg·L) in two hours. Its hydrogen production rates were 3 and 1.5 times higher than that by calcination and pure g-CN, respectively. Electron impact, ozone and oxygen radical also play key roles in plasma preparation. Plasma has unique advantages in metal oxides defect engineering and the preparation of heterostructured composites with prospective applications as photocatalysts for pollutant degradation and water splitting.
以介质阻挡放电(DBD)等离子体作为电子源,通过电子轰击一步法制备了g-CN/TiO复合材料。由于操作温度较低,与传统煅烧法制备的TiO相比,等离子体法制备的TiO具有更高的比表面积和更小的粒径。最有趣的是,电子轰击在TiO上产生了更多的氧空位,这有利于g-CN/TiO异质结构的复合与形成。该复合材料具有更高的光吸收能力和更低的电荷复合效率。等离子体法制备的g-CN/TiO产氢速率可达219.9 μmol·g·h,能在两小时内完全降解罗丹明B(20mg·L)。其产氢速率分别比煅烧法和纯g-CN高3倍和1.5倍。电子轰击、臭氧和氧自由基在等离子体制备过程中也起着关键作用。等离子体在金属氧化物缺陷工程以及制备具有潜在应用前景的异质结构复合材料方面具有独特优势,这些复合材料可作为光催化剂用于污染物降解和水分解。