Suppr超能文献

基于生物信息学分析鉴定与肺鳞状细胞癌相关的关键基因。

Identification of Key Genes Related to Lung Squamous Cell Carcinoma Using Bioinformatics Analysis.

机构信息

Peking University International Cancer Institute and Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.

Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

出版信息

Int J Mol Sci. 2020 Apr 23;21(8):2994. doi: 10.3390/ijms21082994.

Abstract

Lung squamous cell carcinoma (LUSC) is often diagnosed at the advanced stage with poor prognosis. The mechanisms of its pathogenesis and prognosis require urgent elucidation. This study was performed to screen potential biomarkers related to the occurrence, development and prognosis of LUSC to reveal unknown physiological and pathological processes. Using bioinformatics analysis, the lung squamous cell carcinoma microarray datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were analyzed to identify differentially expressed genes (DEGs). Furthermore, PPI and WGCNA network analysis were integrated to identify the key genes closely related to the process of LUSC development. In addition, survival analysis was performed to achieve a prognostic model that accomplished good prediction accuracy. Three hundred and thirty-seven up-regulated and 119 down-regulated genes were identified, in which four genes have been found to play vital roles in LUSC development, namely CCNA2, AURKA, AURKB, and FEN1. The prognostic model contained 5 genes, which were all detrimental to prognosis. The AUC of the established prognostic model for predicting the survival of patients at 1, 3, and 5 years was 0.692, 0.722, and 0.651 in the test data, respectively. In conclusion, this study identified several biomarkers of significant interest for additional investigation of the therapies and methods of prognosis of lung squamous cell carcinoma.

摘要

肺鳞状细胞癌(LUSC)常被诊断为晚期,预后不良。其发病机制和预后的机制需要迫切阐明。本研究旨在筛选与 LUSC 发生、发展和预后相关的潜在生物标志物,以揭示未知的生理和病理过程。通过生物信息学分析,对 GEO 和 TCGA 数据库中的肺鳞状细胞癌微阵列数据集进行分析,以鉴定差异表达基因(DEGs)。此外,整合 PPI 和 WGCNA 网络分析,以鉴定与 LUSC 发展过程密切相关的关键基因。此外,进行生存分析以建立具有良好预测准确性的预后模型。鉴定出 337 个上调基因和 119 个下调基因,其中有 4 个基因已被发现对 LUSC 发展起着重要作用,即 CCNA2、AURKA、AURKB 和 FEN1。预后模型包含 5 个基因,均对预后不利。在测试数据中,建立的预测患者 1、3 和 5 年生存率的预后模型的 AUC 分别为 0.692、0.722 和 0.651。总之,本研究鉴定了一些有意义的生物标志物,可供进一步研究肺鳞状细胞癌的治疗和预后方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/053b/7215920/bbcea6d7ab84/ijms-21-02994-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验