Suppr超能文献

用于高光谱图像恢复的加权低秩张量恢复

Weighted Low-Rank Tensor Recovery for Hyperspectral Image Restoration.

作者信息

Chang Yi, Yan Luxin, Zhao Xi-Le, Fang Houzhang, Zhang Zhijun, Zhong Sheng

出版信息

IEEE Trans Cybern. 2020 Nov;50(11):4558-4572. doi: 10.1109/TCYB.2020.2983102. Epub 2020 Apr 23.

Abstract

Hyperspectral imaging, providing abundant spatial and spectral information simultaneously, has attracted a lot of interest in recent years. Unfortunately, due to the hardware limitations, the hyperspectral image (HSI) is vulnerable to various degradations, such as noises (random noise), blurs (Gaussian and uniform blur), and downsampled (both spectral and spatial downsample), each corresponding to the HSI denoising, deblurring, and super-resolution tasks, respectively. Previous HSI restoration methods are designed for one specific task only. Besides, most of them start from the 1-D vector or 2-D matrix models and cannot fully exploit the structurally spectral-spatial correlation in 3-D HSI. To overcome these limitations, in this article, we propose a unified low-rank tensor recovery model for comprehensive HSI restoration tasks, in which nonlocal similarity within spectral-spatial cubic and spectral correlation are simultaneously captured by third-order tensors. Furthermore, to improve the capability and flexibility, we formulate it as a weighted low-rank tensor recovery (WLRTR) model by treating the singular values differently. We demonstrate the reweighed strategy, which has been extensively studied in the matrix, also greatly benefits the tensor modeling. We also consider the stripe noise in HSI as the sparse error by extending WLRTR to robust principal component analysis (WLRTR-RPCA). Extensive experiments demonstrate the proposed WLRTR models consistently outperform state-of-the-art methods in typical HSI low-level vision tasks, including denoising, destriping, deblurring, and super-resolution.

摘要

高光谱成像能够同时提供丰富的空间和光谱信息,近年来引起了广泛关注。不幸的是,由于硬件限制,高光谱图像(HSI)容易受到各种退化的影响,如噪声(随机噪声)、模糊(高斯模糊和均匀模糊)以及下采样(光谱和空间下采样),它们分别对应于HSI去噪、去模糊和超分辨率任务。以往的HSI恢复方法仅针对某一特定任务设计。此外,它们大多从一维向量或二维矩阵模型出发,无法充分利用三维HSI中结构上的光谱 - 空间相关性。为克服这些限制,在本文中,我们提出了一种用于综合HSI恢复任务的统一低秩张量恢复模型,其中光谱 - 空间立方体中的非局部相似性和光谱相关性由三阶张量同时捕获。此外,为提高能力和灵活性,我们通过对奇异值进行不同处理将其公式化为加权低秩张量恢复(WLRTR)模型。我们证明了在矩阵中已被广泛研究的重新加权策略,对张量建模也有很大益处。我们还通过将WLRTR扩展到鲁棒主成分分析(WLRTR - RPC A),将HSI中的条纹噪声视为稀疏误差。大量实验表明,所提出的WLRTR模型在典型的HSI低级视觉任务中,包括去噪、去条纹、去模糊和超分辨率,始终优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验