Suppr超能文献

RNase E 依赖性降解编码色氨酸酶的 tnaA mRNA 是大肠杆菌诱导酸抗性的前提条件。

RNase E-dependent degradation of tnaA mRNA encoding tryptophanase is prerequisite for the induction of acid resistance in Escherichia coli.

机构信息

Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.

NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.

出版信息

Sci Rep. 2020 Apr 28;10(1):7128. doi: 10.1038/s41598-020-63981-x.

Abstract

Acid-resistance systems are essential for pathogenic Escherichia coli to survive in the strongly acidic environment of the human stomach (pH < 2.5). Among these, the glutamic acid decarboxylase (GAD) system is the most effective. However, the precise mechanism of GAD induction is unknown. We previously reported that a tolC mutant lacking the TolC outer membrane channel was defective in GAD induction. Here, we show that indole, a substrate of TolC-dependent efflux pumps and produced by the tryptophanase encoded by the tnaA gene, negatively regulates GAD expression. GAD expression was restored by deleting tnaA in the tolC mutant; in wild-type E. coli, it was suppressed by adding indole to the growth medium. RNA-sequencing revealed that tnaA mRNA levels drastically decreased upon exposure to moderately acidic conditions (pH 5.5). This decrease was suppressed by RNase E deficiency. Collectively, our results demonstrate that the RNase E-dependent degradation of tnaA mRNA is accelerated upon acid exposure, which decreases intracellular indole concentrations and triggers GAD induction.

摘要

酸抗性系统对于致病性大肠杆菌在人类胃部的强酸性环境(pH 值<2.5)中生存至关重要。在这些系统中,谷氨酸脱羧酶(GAD)系统最为有效。然而,GAD 诱导的确切机制尚不清楚。我们之前曾报道,缺乏 TolC 外膜通道的 tolC 突变体在 GAD 诱导方面存在缺陷。在这里,我们表明色氨酸酶编码的色氨酸酶基因 tnaA 产生的色氨酸,作为 TolC 依赖性外排泵的底物,负调控 GAD 的表达。在 tolC 突变体中删除 tnaA 可恢复 GAD 的表达;在野生型大肠杆菌中,向生长培养基中添加色氨酸会抑制 GAD 的表达。RNA 测序显示,tnaA mRNA 水平在接触中度酸性条件(pH 5.5)时大幅下降。这种下降受到 RNase E 缺乏的抑制。总之,我们的结果表明,RNase E 依赖性 tnaA mRNA 的降解在酸暴露时加速,这降低了细胞内色氨酸的浓度并触发 GAD 诱导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20a5/7188888/a9cbaa7c2a78/41598_2020_63981_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验