Suppr超能文献

基于底层特征的医学图像融合。

Medical Image Fusion Based on Low-Level Features.

机构信息

College of Information Technology, Luoyang Normal University, Luoyang 471934, China.

出版信息

Comput Math Methods Med. 2021 Jun 10;2021:8798003. doi: 10.1155/2021/8798003. eCollection 2021.

Abstract

Medical image fusion is an important technique to address the limited depth of the optical lens for a completely informative focused image. It can well improve the accuracy of diagnosis and assessment of medical problems. However, the difficulty of many traditional fusion methods in preserving all the significant features of the source images compromises the clinical accuracy of medical problems. Thus, we propose a novel medical image fusion method with a low-level feature to deal with the problem. We decompose the source images into base layers and detail layers with local binary pattern operators for obtaining low-level features. The low-level features of the base and detail layers are applied to construct weight maps by using saliency detection. The weight map optimized by fast guided filtering guides the fusion of base and detail layers to maintain the spatial consistency between the source images and their corresponding layers. The recombination of the fused base and detail layers constructs the final fused image. The experimental results demonstrated that the proposed method achieved a state-of-the-art performance for multifocus images.

摘要

医学图像融合是一种解决光学镜头景深有限,无法获取完全清晰聚焦图像的重要技术。它可以很好地提高医学问题诊断和评估的准确性。然而,许多传统融合方法在保留源图像所有重要特征方面的困难,影响了医学问题的临床准确性。因此,我们提出了一种新的基于底层特征的医学图像融合方法来解决这个问题。我们使用局部二值模式算子将源图像分解为基底层和细节层,以获取底层特征。通过显著性检测,将基底层和细节层的底层特征应用于构建权重图。通过快速导向滤波优化的权重图指导基底层和细节层的融合,以保持源图像及其对应层之间的空间一致性。融合的基底层和细节层的重组构建了最终的融合图像。实验结果表明,该方法在多聚焦图像方面取得了最先进的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a45/8211524/640f85259b86/CMMM2021-8798003.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验