Suppr超能文献

整合分析确定了胃癌间质特征中基于免疫的预后特征。

Integrated Analysis Identifies an Immune-Based Prognostic Signature for the Mesenchymal Identity in Gastric Cancer.

机构信息

Department of Gastroenterology, Beilun People's Hospital, Ningbo, China.

Department of Gastrointestinal Hernia Surgery, Cangzhou People's Hospital, Cangzhou, China.

出版信息

Biomed Res Int. 2020 Apr 9;2020:9780981. doi: 10.1155/2020/9780981. eCollection 2020.

Abstract

BACKGROUND

Gastric cancer (GC) has been divided into four molecular subtypes, of which the mesenchymal subtype has the poorest survival. Our goal is to develop a prognostic signature by integrating the immune system and molecular modalities involved in the mesenchymal subtype.

METHODS

The gene expression profiles collected from 6 public datasets were applied to this study, including 1,221 samples totally. Network analysis was applied to integrate the mesenchymal modalities and immune signature to establish an immune-based prognostic signature for GC (IPSGC).

RESULTS

We identified six immune genes as key factors of the mesenchymal subtype and established the IPSGC. The IPSGC can significantly divide patients into high- and low-risk groups in terms of overall survival (OS) and relapse-free survival (RFS) in discovery (OS: < 0.001) and 5 independent validation sets (OS range: = 0.05 to < 0.001; RFS range: = 0.03 to < 0.001). Further, in multivariate analysis, the IPSGC remained an independent predictor of prognosis and performed better efficiency compared to clinical characteristics. Moreover, macrophage M2 was significantly enriched in the high-risk group, while plasma cells were enriched in the low-risk group.

CONCLUSIONS

We propose an immune-based signature identified by network analysis, which is a promising prognostic biomarker and help for the selection of GC patients who might benefit from more rigorous therapies. Further prospective studies are warranted to test and validate its efficiency for clinical application.

摘要

背景

胃癌(GC)已被分为四个分子亚型,其中间质亚型的生存最差。我们的目标是通过整合间质亚型中涉及的免疫系统和分子模式来开发一个预后标志物。

方法

本研究应用了 6 个公共数据集的基因表达谱,共纳入了 1221 例样本。应用网络分析整合间质模式和免疫特征,建立 GC 的免疫预后标志物(IPSGC)。

结果

我们确定了六个免疫基因作为间质亚型的关键因素,并建立了 IPSGC。IPSGC 可以在发现组(OS: < 0.001)和 5 个独立验证集中显著地将患者分为高风险和低风险组(OS 范围: = 0.05 至 < 0.001;RFS 范围: = 0.03 至 < 0.001)。进一步的多变量分析表明,IPSGC 仍然是预后的独立预测因素,与临床特征相比具有更好的效率。此外,高风险组中巨噬细胞 M2 明显富集,而低风险组中浆细胞富集。

结论

我们提出了一种通过网络分析确定的免疫标志物,这是一种有前途的预后生物标志物,有助于选择可能受益于更严格治疗的 GC 患者。需要进一步的前瞻性研究来测试和验证其在临床应用中的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c806/7171688/59d4f746babf/BMRI2020-9780981.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验