Huang Shih-Cheng, Kothari Tanay, Banerjee Imon, Chute Chris, Ball Robyn L, Borus Norah, Huang Andrew, Patel Bhavik N, Rajpurkar Pranav, Irvin Jeremy, Dunnmon Jared, Bledsoe Joseph, Shpanskaya Katie, Dhaliwal Abhay, Zamanian Roham, Ng Andrew Y, Lungren Matthew P
1Department of Biomedical Data Science, Stanford University, Stanford, CA USA.
2Center for Artificial Intelligence in Medicine & Imaging, Stanford University, Stanford, CA USA.
NPJ Digit Med. 2020 Apr 24;3:61. doi: 10.1038/s41746-020-0266-y. eCollection 2020.
Pulmonary embolism (PE) is a life-threatening clinical problem and computed tomography pulmonary angiography (CTPA) is the gold standard for diagnosis. Prompt diagnosis and immediate treatment are critical to avoid high morbidity and mortality rates, yet PE remains among the diagnoses most frequently missed or delayed. In this study, we developed a deep learning model-PENet, to automatically detect PE on volumetric CTPA scans as an end-to-end solution for this purpose. The PENet is a 77-layer 3D convolutional neural network (CNN) pretrained on the Kinetics-600 dataset and fine-tuned on a retrospective CTPA dataset collected from a single academic institution. The PENet model performance was evaluated in detecting PE on data from two different institutions: one as a hold-out dataset from the same institution as the training data and a second collected from an external institution to evaluate model generalizability to an unrelated population dataset. PENet achieved an AUROC of 0.84 [0.82-0.87] on detecting PE on the hold out internal test set and 0.85 [0.81-0.88] on external dataset. PENet also outperformed current state-of-the-art 3D CNN models. The results represent successful application of an end-to-end 3D CNN model for the complex task of PE diagnosis without requiring computationally intensive and time consuming preprocessing and demonstrates sustained performance on data from an external institution. Our model could be applied as a triage tool to automatically identify clinically important PEs allowing for prioritization for diagnostic radiology interpretation and improved care pathways via more efficient diagnosis.
肺栓塞(PE)是一个危及生命的临床问题,计算机断层扫描肺动脉造影(CTPA)是诊断的金标准。及时诊断和立即治疗对于避免高发病率和死亡率至关重要,但PE仍然是最常被漏诊或延误的诊断之一。在本研究中,我们开发了一种深度学习模型——PENet,用于在容积CTPA扫描上自动检测PE,作为实现此目的的端到端解决方案。PENet是一个77层的三维卷积神经网络(CNN),在Kinetics-600数据集上进行预训练,并在从单个学术机构收集的回顾性CTPA数据集上进行微调。PENet模型性能在来自两个不同机构的数据上进行评估:一个作为与训练数据来自同一机构的保留数据集,另一个从外部机构收集,以评估模型对不相关人群数据集的通用性。PENet在保留的内部测试集上检测PE时的曲线下面积(AUROC)为0.84[0.82-0.87],在外部数据集上为0.85[0.81-0.88]。PENet也优于当前最先进的三维CNN模型。结果代表了一种端到端三维CNN模型在PE诊断这一复杂任务中的成功应用,无需计算量大且耗时的预处理,并在来自外部机构的数据上表现出持续性能。我们的模型可作为一种分诊工具,自动识别临床上重要的PE,以便对诊断放射学解读进行优先排序,并通过更有效的诊断改善护理路径。