Suppr超能文献

自动深度学习网络监测颅部图像中的急性神经系统事件。

Automated deep-neural-network surveillance of cranial images for acute neurologic events.

机构信息

Department of Radiology, Icahn School of Medicine, New York, NY, USA.

Department of Neurological Surgery, Icahn School of Medicine, New York, NY, USA.

出版信息

Nat Med. 2018 Sep;24(9):1337-1341. doi: 10.1038/s41591-018-0147-y. Epub 2018 Aug 13.

Abstract

Rapid diagnosis and treatment of acute neurological illnesses such as stroke, hemorrhage, and hydrocephalus are critical to achieving positive outcomes and preserving neurologic function-'time is brain'. Although these disorders are often recognizable by their symptoms, the critical means of their diagnosis is rapid imaging. Computer-aided surveillance of acute neurologic events in cranial imaging has the potential to triage radiology workflow, thus decreasing time to treatment and improving outcomes. Substantial clinical work has focused on computer-assisted diagnosis (CAD), whereas technical work in volumetric image analysis has focused primarily on segmentation. 3D convolutional neural networks (3D-CNNs) have primarily been used for supervised classification on 3D modeling and light detection and ranging (LiDAR) data. Here, we demonstrate a 3D-CNN architecture that performs weakly supervised classification to screen head CT images for acute neurologic events. Features were automatically learned from a clinical radiology dataset comprising 37,236 head CTs and were annotated with a semisupervised natural-language processing (NLP) framework. We demonstrate the effectiveness of our approach to triage radiology workflow and accelerate the time to diagnosis from minutes to seconds through a randomized, double-blinded, prospective trial in a simulated clinical environment.

摘要

急性神经疾病(如中风、出血和脑积水)的快速诊断和治疗对于获得积极的结果和保护神经功能至关重要——“时间就是大脑”。尽管这些疾病的症状通常很明显,但诊断的关键手段是快速成像。计算机辅助监测颅部成像中的急性神经事件有可能对放射科工作流程进行分诊,从而缩短治疗时间并改善结果。大量的临床工作集中在计算机辅助诊断(CAD)上,而体积图像分析方面的技术工作主要集中在分割上。三维卷积神经网络(3D-CNN)主要用于三维建模和光探测和测距(LiDAR)数据的监督分类。在这里,我们展示了一种 3D-CNN 架构,该架构可执行弱监督分类,以筛选急性神经事件的头部 CT 图像。特征是从包含 37236 个头 CT 的临床放射学数据集自动学习的,并使用半监督自然语言处理(NLP)框架进行注释。我们通过在模拟临床环境中的随机、双盲、前瞻性试验,展示了我们的方法在分诊放射科工作流程和加速诊断时间方面的有效性,将时间从分钟缩短到秒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验