School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
Department of Diagnostic and Interventional Imaging, McGovern Medical School, Houston, TX, USA.
Sci Rep. 2022 Jul 29;12(1):13087. doi: 10.1038/s41598-022-16976-9.
Pulmonary embolism (PE) is a blood clot traveling to the lungs and is associated with substantial morbidity and mortality. Therefore, rapid diagnoses and treatments are essential. Chest computed tomographic pulmonary angiogram (CTPA) is the gold standard for PE diagnoses. Deep learning can enhance the radiologists'workflow by identifying PE using CTPA, which helps to prioritize important cases and hasten the diagnoses for at-risk patients. In this study, we propose a two-phase multitask learning method that can recognize the presence of PE and its properties such as the position, whether acute or chronic, and the corresponding right-to-left ventricle diameter (RV/LV) ratio, thereby reducing false-negative diagnoses. Trained on the RSNA-STR Pulmonary Embolism CT Dataset, our model demonstrates promising PE detection performances on the hold-out test set with the window-level AUROC achieving 0.93 and the sensitivity being 0.86 with a specificity of 0.85, which is competitive with the radiologists'sensitivities ranging from 0.67 to 0.87 with specificities of 0.89-0.99. In addition, our model provides interpretability through attention weight heatmaps and gradient-weighted class activation mapping (Grad-CAM). Our proposed deep learning model could predict PE existence and other properties of existing cases, which could be applied to practical assistance for PE diagnosis.
肺栓塞(PE)是指血栓移动到肺部,与大量发病率和死亡率相关。因此,快速诊断和治疗至关重要。胸部计算机断层肺动脉造影(CTPA)是 PE 诊断的金标准。深度学习可以通过使用 CTPA 识别 PE 来增强放射科医生的工作流程,这有助于优先处理重要病例,并加快高危患者的诊断。在这项研究中,我们提出了一种两阶段多任务学习方法,该方法可以识别 PE 的存在及其特征,例如位置、急性或慢性以及相应的右心室到左心室直径(RV/LV)比值,从而减少假阴性诊断。在 RSNA-STR 肺栓塞 CT 数据集上进行训练后,我们的模型在验证集上展示了有前途的 PE 检测性能,窗位 AUROC 达到 0.93,敏感性为 0.86,特异性为 0.85,与放射科医生的敏感性(范围为 0.67 至 0.87)和特异性(范围为 0.89 至 0.99)相当。此外,我们的模型通过注意力权重热图和梯度加权类激活映射(Grad-CAM)提供了可解释性。我们提出的深度学习模型可以预测现有病例中 PE 的存在和其他特征,这可应用于 PE 诊断的实际辅助。