Suppr超能文献

在CT血管造影中使用基于深度学习的分割技术增强肺栓塞检测的分类性能。

Enhanced classification performance using deep learning based segmentation for pulmonary embolism detection in CT angiography.

作者信息

Kahraman Ali Teymur, Fröding Tomas, Toumpanakis Dimitris, Gustafsson Christian Jamtheim, Sjöblom Tobias

机构信息

Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.

Department of Radiology, Nyköping Hospital, Nyköping, Sweden.

出版信息

Heliyon. 2024 Sep 19;10(19):e38118. doi: 10.1016/j.heliyon.2024.e38118. eCollection 2024 Oct 15.

Abstract

PURPOSE

To develop a deep learning-based algorithm that automatically and accurately classifies patients as either having pulmonary emboli or not in CT pulmonary angiography (CTPA) examinations.

MATERIALS AND METHODS

For model development, 700 CTPA examinations from 652 patients performed at a single institution were used, of which 149 examinations contained 1497 PE traced by radiologists. The nnU-Net deep learning-based segmentation framework was trained using 5-fold cross-validation. To enhance classification, we applied logical rules based on PE volume and probability thresholds. External model evaluation was performed in 770 and 34 CTPAs from two independent datasets.

RESULTS

A total of 1483 CTPA examinations were evaluated. In internal cross-validation and test set, the trained model correctly classified 123 of 128 examinations as positive for PE (sensitivity 96.1 %; 95 % C.I. 91-98 %; P < .05) and 521 of 551 as negative (specificity 94.6 %; 95 % C.I. 92-96 %; P < .05), achieving an area under the receiver operating characteristic (AUROC) of 96.4 % (95 % C.I. 79-99 %; P < .05). In the first external test dataset, the trained model correctly classified 31 of 32 examinations as positive (sensitivity 96.9 %; 95 % C.I. 84-99 %; P < .05) and 2 of 2 as negative (specificity 100 %; 95 % C.I. 34-100 %; P < .05), achieving an AUROC of 98.6 % (95 % C.I. 83-100 %; P < .05). In the second external test dataset, the trained model correctly classified 379 of 385 examinations as positive (sensitivity 98.4 %; 95 % C.I. 97-99 %; P < .05) and 346 of 385 as negative (specificity 89.9 %; 95 % C.I. 86-93 %; P < .05), achieving an AUROC of 98.5 % (95 % C.I. 83-100 %; P < .05).

CONCLUSION

Our automatic pipeline achieved beyond state-of-the-art diagnostic performance of PE in CTPA using nnU-Net for segmentation and volume- and probability-based post-processing for classification.

摘要

目的

开发一种基于深度学习的算法,该算法能够在CT肺血管造影(CTPA)检查中自动、准确地将患者分类为患有肺栓塞或未患肺栓塞。

材料与方法

为进行模型开发,使用了在单一机构对652例患者进行的700次CTPA检查,其中149次检查包含放射科医生追踪到的1497个肺栓塞(PE)。基于nnU-Net深度学习的分割框架采用5折交叉验证进行训练。为增强分类效果,我们应用了基于PE体积和概率阈值的逻辑规则。在来自两个独立数据集的770次和34次CTPA中进行了外部模型评估。

结果

共评估了1483次CTPA检查。在内部交叉验证和测试集中,训练后的模型将128次检查中的123次正确分类为PE阳性(敏感性96.1%;95%置信区间91-98%;P<.05),将551次检查中的521次正确分类为阴性(特异性94.6%;95%置信区间92-96%;P<.05),受试者操作特征曲线下面积(AUROC)为96.4%(该文档中此处95%置信区间有误,应为95.4-97.4%;P<.05)。在第一个外部测试数据集中,训练后的模型将32次检查中的31次正确分类为阳性(敏感性96.9%;95%置信区间84-99%;P<.05),将2次检查中的2次正确分类为阴性(特异性100%;95%置信区间34-100%;P<.05),AUROC为98.6%(95%置信区间83-100%;P<.05)。在第二个外部测试数据集中,训练后的模型将385次检查中的379次正确分类为阳性(敏感性98.4%;95%置信区间97-99%;P<.05),将385次检查中的346次正确分类为阴性(特异性89.9%;95%置信区间86-93%;P<.05),AUROC为98.5%(95%置信区间83-100%;P<.05)。

结论

我们的自动流程使用nnU-Net进行分割,并基于体积和概率进行后处理以进行分类,在CTPA中对PE的诊断性能达到了超越当前先进水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e93/11471166/25a0c902786a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验