Centro de Investigación y de Estudios Avanzados, del Instituto Politécnico Nacional Unidad Monterrey, Parque PIIT, Apodaca, Nuevo León, México.
Universidad de las Américas Puebla, Escuela de Ingeniería, San Andrés Cholula, Puebla, México.
PLoS One. 2020 Apr 30;15(4):e0232408. doi: 10.1371/journal.pone.0232408. eCollection 2020.
Mitochondria are quantitatively the most important sources of reactive oxygen species (ROS) which are formed as by-products during cellular respiration. ROS generation occurs when single electrons are transferred to molecular oxygen. This leads to a number of different ROS types, among them superoxide. Although most studies focus on ROS generation in the mitochondrial matrix, the intermembrane space (IMS) is also important in this regard. The main scavengers for the detoxification of superoxide in the IMS are Cu, Zn superoxide dismutase (SOD1) and cytochrome-c. Similar to ROS, certain reactive carbonyl species are known for their high reactivity. The consequences are deleterious modifications to essential components compromising cellular functions and contributing to the etiology of severe pathological conditions like cancer, diabetes and neurodegeneration. In this study, we investigated the susceptibility of SOD1 and cytochrome-c to in vitro glycation by the dicarbonyl methylglyoxal (MGO) and the resulting effects on their structure. We utilized experimental techniques like immunodetection of the MGO-mediated modification 5-hydro-5-methylimidazolone, differential scanning calorimetry, fluorescence emission and circular dichroism measurements. We found that glycation of cytochrome-c leads to monomer aggregation, an altered secondary structure (increase in alpha helical content) and slightly more compact folding. In addition to structural changes, glycated cytochrome-c displays an altered thermal unfolding behavior. Subjecting SOD1 to MGO does not influence its secondary structure. However, similar to cytochrome-c, subunit aggregation is observed under denaturating conditions. Furthermore, the appearance of a second peak in the calorimetry diagram indirectly suggests de-metallation of SOD1 when high MGO levels are used. In conclusion, our data demonstrate that MGO has the potential to alter several structural parameters in important proteins of energy metabolism (cytochrome-c) and antioxidant defense (cytochrome-c, SOD1).
线粒体是活性氧(ROS)的最重要来源,ROS 是细胞呼吸过程中的副产物形成的。当单个电子转移到分子氧时,就会发生 ROS 的产生。这导致了许多不同类型的 ROS,其中包括超氧化物。尽管大多数研究都集中在线粒体基质中的 ROS 产生,但在膜间隙(IMS)方面也很重要。IMS 中超氧化物解毒的主要清除剂是 Cu,Zn 超氧化物歧化酶(SOD1)和细胞色素-c。与 ROS 类似,某些反应性羰基物质以其高反应性而闻名。其后果是对重要成分的有害修饰,损害细胞功能,并导致严重病理状况(如癌症、糖尿病和神经退行性变)的病因。在这项研究中,我们研究了 SOD1 和细胞色素-c 对二羰基甲基乙二醛(MGO)体外糖化的敏感性,以及对其结构的影响。我们利用免疫检测 MGO 介导的 5-羟-5-甲基咪唑啉酮修饰、差示扫描量热法、荧光发射和圆二色性测量等实验技术。我们发现,细胞色素-c 的糖化导致单体聚集,二级结构改变(α螺旋含量增加)和折叠稍微更紧凑。除了结构变化外,糖化细胞色素-c 还显示出热解折叠行为的改变。使 SOD1 暴露于 MGO 不会影响其二级结构。然而,与细胞色素-c 相似,在变性条件下观察到亚基聚集。此外,在热谱图中出现第二个峰间接表明,当使用高 MGO 水平时,SOD1 会脱金属。总之,我们的数据表明,MGO 有可能改变能量代谢(细胞色素-c)和抗氧化防御(细胞色素-c、SOD1)中重要蛋白质的几个结构参数。