Suppr超能文献

贵金属纳米颗粒在 CO 氧化过程中的结构变化及其对催化剂活性的影响。

Structural changes in noble metal nanoparticles during CO oxidation and their impact on catalyst activity.

机构信息

Department of Physics, National University of Singapore, Singapore, 117551, Singapore.

Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore.

出版信息

Nat Commun. 2020 May 1;11(1):2133. doi: 10.1038/s41467-020-16027-9.

Abstract

The dynamical structure of a catalyst determines the availability of active sites on its surface. However, how nanoparticle (NP) catalysts re-structure under reaction conditions and how these changes associate with catalytic activity remains poorly understood. Using operando transmission electron microscopy, we show that Pd NPs exhibit reversible structural and activity changes during heating and cooling in mixed gas environments containing O and CO. Below 400 °C, the NPs form flat low index facets and are inactive towards CO oxidation. Above 400 °C, the NPs become rounder, and conversion of CO to CO increases significantly. This behavior reverses when the temperature is later reduced. Pt and Rh NPs under similar conditions do not exhibit such reversible transformations. We propose that adsorbed CO molecules suppress the activity of Pd NPs at lower temperatures by stabilizing low index facets and reducing the number of active sites. This hypothesis is supported by thermodynamic calculations.

摘要

催化剂的动态结构决定了其表面活性位点的可用性。然而,纳米颗粒(NP)催化剂在反应条件下如何重新结构,以及这些变化如何与催化活性相关联,仍然知之甚少。本文使用原位透射电子显微镜,表明 Pd NPs 在含有 O 和 CO 的混合气体环境中加热和冷却过程中表现出可逆的结构和活性变化。在 400°C 以下,NP 形成平坦的低指数晶面,对 CO 氧化无活性。在 400°C 以上,NP 变得更圆,CO 向 CO 的转化率显著增加。当温度随后降低时,这种行为会逆转。在类似条件下的 Pt 和 Rh NPs 则没有表现出这种可逆转变。我们提出,吸附的 CO 分子通过稳定低指数晶面和减少活性位点数来抑制低温下 Pd NPs 的活性。这一假设得到了热力学计算的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/479e/7195460/a1ec3923f72d/41467_2020_16027_Fig1_HTML.jpg

相似文献

2
Periodic structural changes in Pd nanoparticles during oscillatory CO oxidation reaction.
Nat Commun. 2022 Oct 19;13(1):6176. doi: 10.1038/s41467-022-33304-x.
3
Biogenic Pt/CaCO Nanocomposite as a Robust Catalyst toward Benzene Oxidation.
ACS Appl Mater Interfaces. 2020 Jan 15;12(2):2469-2480. doi: 10.1021/acsami.9b18490. Epub 2019 Dec 30.
4
Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
J Am Chem Soc. 2010 Jun 2;132(21):7418-28. doi: 10.1021/ja101108w.
6
Revealing the Origin of Low-Temperature Activity of Ni-Rh Nanostructures during CO Oxidation Reaction with Operando TEM.
Adv Sci (Weinh). 2022 Jun;9(17):e2105599. doi: 10.1002/advs.202105599. Epub 2022 May 5.
9
Phase Segregation in PdCu Alloy Nanoparticles During CO Oxidation Reaction at Atmospheric Pressure.
Adv Sci (Weinh). 2023 Sep;10(25):e2302663. doi: 10.1002/advs.202302663. Epub 2023 Jun 28.

引用本文的文献

1
Precise positioning of Au islands within mesoporous Pd-Pt nanoparticles for plasmon-enhanced methanol oxidation.
Chem Sci. 2025 Apr 9;16(19):8309-8318. doi: 10.1039/d4sc07345b. eCollection 2025 May 14.
2
Fractal Characterization of Simulated Metal Nanocatalysts in 3D.
Small Sci. 2024 Jul 9;4(10):2400123. doi: 10.1002/smsc.202400123. eCollection 2024 Oct.
5
Redox dynamics and surface structures of an active palladium catalyst during methane oxidation.
Nat Commun. 2024 Jun 1;15(1):4678. doi: 10.1038/s41467-024-49134-y.
6
Dynamic Active Sites In Situ Formed in Metal Nanoparticle Reshaping under Reaction Conditions.
JACS Au. 2024 May 9;4(5):1892-1900. doi: 10.1021/jacsau.4c00088. eCollection 2024 May 27.
7
Interrogating site dependent kinetics over SiO-supported Pt nanoparticles.
Nat Commun. 2024 Mar 7;15(1):2074. doi: 10.1038/s41467-024-46496-1.
8
Electron Microscopy of Catalysts: The Missing Cornerstone in Heterogeneous Catalysis Research?
Chem Rev. 2023 Dec 13;123(23):13374-13418. doi: 10.1021/acs.chemrev.3c00352. Epub 2023 Nov 15.
9
Recent advances in transmission electron microscopy techniques for heterogeneous catalysis.
iScience. 2023 Jun 8;26(7):107072. doi: 10.1016/j.isci.2023.107072. eCollection 2023 Jul 21.

本文引用的文献

1
Identification of Active Sites in Oxidation Reaction from Real-Time Probing of Adsorbate Motion over Pd Nanoparticles.
J Phys Chem Lett. 2018 Sep 20;9(18):5202-5206. doi: 10.1021/acs.jpclett.8b02215. Epub 2018 Aug 30.
2
Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts.
Nat Commun. 2017 Aug 21;8(1):305. doi: 10.1038/s41467-017-00385-y.
3
Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts.
Chem Soc Rev. 2017 Jul 17;46(14):4347-4374. doi: 10.1039/c7cs00045f.
5
Current status and future directions for in situ transmission electron microscopy.
Ultramicroscopy. 2016 Nov;170:86-95. doi: 10.1016/j.ultramic.2016.08.007. Epub 2016 Aug 6.
7
Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.
Chem Rev. 2016 Mar 23;116(6):3487-539. doi: 10.1021/cr5002657. Epub 2016 Mar 9.
8
Model Approach in Heterogeneous Catalysis: Kinetics and Thermodynamics of Surface Reactions.
Acc Chem Res. 2015 Oct 20;48(10):2775-82. doi: 10.1021/acs.accounts.5b00237. Epub 2015 Sep 14.
9
Electron microscopy of solid catalysts--transforming from a challenge to a toolbox.
Chem Rev. 2015 Apr 22;115(8):2818-82. doi: 10.1021/cr500084c. Epub 2015 Mar 31.
10
Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity.
Micron. 2015 Jan;68:176-185. doi: 10.1016/j.micron.2014.07.009. Epub 2014 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验