Varga Zoltán, Fehér Bence, Kitka Diána, Wacha András, Bóta Attila, Berényi Szilvia, Pipich Vitaliy, Fraikin Jean-Luc
Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
Colloids Surf B Biointerfaces. 2020 Apr 19;192:111053. doi: 10.1016/j.colsurfb.2020.111053.
Size characterization of extracellular vesicles (EVs) and drug delivery liposomes is of great importance in their applications in diagnosis and therapy of diseases. There are many different size characterization techniques used in the field, which often report different size values. Besides technological biases, these differences originate from the fact that various methods measure different physical quantities to determine particle size. In this study, the size of synthetic liposomes with nominal diameters of 50nm and 100nm, and red blood cell-derived EVs (REVs) were measured with established optical methods, such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), and with emerging non-optical methods such as microfluidic resistive pulse sensing (MRPS) and very small-angle neutron scattering (VSANS). The comparison of the hydrodynamic sizes obtained by DLS and NTA with the sizes corresponding to the excluded volume of the particles by MRPS enabled the estimation of the thickness of the hydration shell of the particles. The comparison of diameter values corresponding to the boundary of the phospholipid bilayer obtained from VSANS measurements with MRPS size values revealed the thickness of the polyethylene glycol-layer in case of synthetic liposomes, and the thickness of the protein corona in case of REVs.
细胞外囊泡(EVs)和药物递送脂质体的尺寸表征在其疾病诊断和治疗应用中至关重要。该领域使用了许多不同的尺寸表征技术,这些技术常常报告不同的尺寸值。除了技术偏差外,这些差异源于各种方法测量不同物理量以确定颗粒大小这一事实。在本研究中,使用动态光散射(DLS)和纳米颗粒跟踪分析(NTA)等成熟的光学方法,以及微流控电阻脉冲传感(MRPS)和极小角中子散射(VSANS)等新兴的非光学方法,对标称直径为50nm和100nm的合成脂质体以及红细胞衍生的细胞外囊泡(REVs)的尺寸进行了测量。通过DLS和NTA获得的流体动力学尺寸与MRPS测量的颗粒排除体积对应的尺寸进行比较,能够估算颗粒水化壳的厚度。将VSANS测量得到的磷脂双层边界对应的直径值与MRPS尺寸值进行比较,揭示了合成脂质体情况下聚乙二醇层的厚度以及REVs情况下蛋白质冠层的厚度。