Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
Chemphyschem. 2020 Jul 2;21(13):1436-1443. doi: 10.1002/cphc.202000249. Epub 2020 Jun 4.
Chemical shift tensors obtained from solid-state NMR spectroscopy are very sensitive reporters of structure and dynamics in proteins. While accurate C and N chemical shift tensors are accessible by magic angle spinning (MAS) NMR, their quantum mechanical calculations remain challenging, particularly for N atoms. Here we compare experimentally determined backbone C and N chemical shift tensors by MAS NMR with hybrid quantum mechanics/molecular mechanics/molecular dynamics (MD-QM/MM) calculations for the carbohydrate-binding domain of galectin-3. Excellent agreement between experimental and computed N chemical shift anisotropy values was obtained using the Amber ff15ipq force field when solvent dynamics was taken into account in the calculation. Our results establish important benchmark conditions for improving the accuracy of chemical shift calculations in proteins and may aid in the validation of protein structure models derived by MAS NMR.
从固态 NMR 光谱中获得的化学位移张量是蛋白质结构和动力学的非常敏感的报告者。虽然通过魔角旋转(MAS)NMR 可以获得准确的 C 和 N 化学位移张量,但它们的量子力学计算仍然具有挑战性,特别是对于 N 原子。在这里,我们将通过 MAS NMR 实验测定的碳水化合物结合域半乳凝集素-3 的骨架 C 和 N 化学位移张量与混合量子力学/分子力学/分子动力学(QM/MM)计算进行比较。当在计算中考虑溶剂动力学时,使用 Amber ff15ipq 力场可以获得实验和计算的 N 化学各向异性值之间的极好一致性。我们的结果为提高蛋白质中化学位移计算的准确性确立了重要的基准条件,并可能有助于通过 MAS NMR 验证蛋白质结构模型。