Suppr超能文献

在以纤维二糖为生长底物的恶臭假单胞菌EM42中,D-木糖向D-木糖酸盐的生物转化与中链长度聚羟基脂肪酸酯的生产相耦合。

Biotransformation of d-xylose to d-xylonate coupled to medium-chain-length polyhydroxyalkanoate production in cellobiose-grown Pseudomonas putida EM42.

作者信息

Dvořák Pavel, Kováč Jozef, de Lorenzo Víctor

机构信息

Department of Experimental Biology (Section of Microbiology), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.

Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, Darwin 3, 28049, Madrid, Spain.

出版信息

Microb Biotechnol. 2020 Jul;13(4):1273-1283. doi: 10.1111/1751-7915.13574. Epub 2020 May 3.

Abstract

Co-production of two or more desirable compounds from low-cost substrates by a single microbial catalyst could greatly improve the economic competitiveness of many biotechnological processes. However, reports demonstrating the adoption of such co-production strategy are still scarce. In this study, the ability of genome-edited strain Pseudomonas putida EM42 to simultaneously valorize d-xylose and d-cellobiose - two important lignocellulosic carbohydrates - by converting them into the platform chemical d-xylonate and medium-chain-length polyhydroxyalkanoates, respectively, was investigated. Biotransformation experiments performed with P. putida resting cells showed that promiscuous periplasmic glucose oxidation route can efficiently generate extracellular xylonate with a high yield. Xylose oxidation was subsequently coupled to the growth of P. putida with cytoplasmic β-glucosidase BglC from Thermobifida fusca on d-cellobiose. This disaccharide turned out to be a better co-substrate for xylose-to-xylonate biotransformation than monomeric glucose. This was because unlike glucose, cellobiose did not block oxidation of the pentose by periplasmic glucose dehydrogenase Gcd, but, similarly to glucose, it was a suitable substrate for polyhydroxyalkanoate formation in P. putida. Co-production of extracellular xylose-born xylonate and intracellular cellobiose-born medium-chain-length polyhydroxyalkanoates was established in proof-of-concept experiments with P. putida grown on the disaccharide. This study highlights the potential of P. putida EM42 as a microbial platform for the production of xylonate, identifies cellobiose as a new substrate for mcl-PHA production, and proposes a fresh strategy for the simultaneous valorization of xylose and cellobiose.

摘要

利用单一微生物催化剂从低成本底物中共生产两种或更多种所需化合物,可极大提高许多生物技术过程的经济竞争力。然而,证明采用这种共生产策略的报道仍然很少。在本研究中,研究了基因组编辑菌株恶臭假单胞菌EM42通过分别将d-木糖和d-纤维二糖(两种重要的木质纤维素碳水化合物)转化为平台化学品d-木糖酸盐和中链长度聚羟基脂肪酸酯,同时对其进行增值利用的能力。用恶臭假单胞菌静止细胞进行的生物转化实验表明,混杂的周质葡萄糖氧化途径可以高效地高产胞外木糖酸盐。随后,木糖氧化与恶臭假单胞菌利用来自嗜热栖热放线菌的胞质β-葡萄糖苷酶BglC对d-纤维二糖的生长相耦合。结果表明,这种二糖是木糖到木糖酸盐生物转化比单体葡萄糖更好的共底物。这是因为与葡萄糖不同,纤维二糖不会阻断周质葡萄糖脱氢酶Gcd对戊糖的氧化,但与葡萄糖类似,它是恶臭假单胞菌中聚羟基脂肪酸酯形成的合适底物。在以二糖为生长底物的恶臭假单胞菌的概念验证实验中,建立了胞外木糖衍生的木糖酸盐和胞内纤维二糖衍生的中链长度聚羟基脂肪酸酯的共生产。本研究突出了恶臭假单胞菌EM42作为生产木糖酸盐的微生物平台的潜力,确定纤维二糖为生产中链长度聚羟基脂肪酸酯的新底物,并提出了同时增值利用木糖和纤维二糖的新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95e2/7264884/90ee16351d7f/MBT2-13-1273-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验