Divisão de Modelagem de Transformações Físicas e Químicas, Grupo de Química Teórica e Estrutural de Anápolis, Centro de Pesquisa e Pós-Graduação. Universidade Estadual de Goiás, Anápolis 75132-903, Brazil.
Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970 Brasília, Brazil.
Molecules. 2020 Apr 30;25(9):2098. doi: 10.3390/molecules25092098.
A variety of current experiments and molecular dynamics computations are expanding our understanding of rate processes occurring in extreme environments, especially at low temperatures, where deviations from linearity of Arrhenius plots are revealed. The thermodynamic behavior of molecular systems is determined at a specific temperature within conditions on large volume and number of particles at a given density (the thermodynamic limit): on the other side, kinetic features are intuitively perceived as defined in a range between the extreme temperatures, which limit the existence of each specific phase. In this paper, extending the statistical mechanics approach due to Fowler and collaborators, ensembles and partition functions are defined to evaluate initial state averages and activation energies involved in the kinetics of rate processes. A key step is delayed access to the thermodynamic limit when conditions on a large volume and number of particles are not fulfilled: the involved mathematical analysis requires consideration of the role of the succession for the exponential function due to Euler, precursor to the Poisson and Boltzmann classical distributions, recently discussed. Arguments are presented to demonstrate that a universal feature emerges: Convex Arrhenius plots (-Arrhenius behavior) as temperature decreases are amply documented in progressively wider contexts, such as viscosity and glass transitions, biological processes, enzymatic catalysis, plasma catalysis, geochemical fluidity, and chemical reactions involving collective phenomena. The treatment expands the classical Tolman's theorem formulated quantally by Fowler and Guggenheim: the activation energy of processes is related to the averages of microscopic energies. We previously introduced the concept of "transitivity", a function that compactly accounts for the development of heuristic formulas and suggests the search for universal behavior. The velocity distribution function far from the thermodynamic limit is illustrated; the fraction of molecules with energy in excess of a certain threshold for the description of the kinetics of low-temperature transitions and of non-equilibrium reaction rates is derived. Uniform extension beyond the classical case to include quantum tunneling (leading to the concavity of plots, -Arrhenius behavior) and to Fermi and Bose statistics has been considered elsewhere. A companion paper presents a computational code permitting applications to a variety of phenomena and provides further examples.
目前的各种实验和分子动力学计算正在扩展我们对极端环境中发生的速率过程的理解,特别是在低温下,那里揭示了 Arrhenius 图的线性偏差。分子系统的热力学行为是在特定温度下确定的,在给定密度下(热力学极限),在大体积和大量粒子的条件下:另一方面,动力学特征直观地被认为是在极端温度之间的范围内定义的,这限制了每个特定相的存在。在本文中,扩展了 Fowler 及其合作者的统计力学方法,定义了系综和配分函数,以评估速率过程动力学中涉及的初始状态平均值和激活能。关键步骤是在未满足大体积和大量粒子条件时延迟对热力学极限的访问:所涉及的数学分析需要考虑由于 Euler 导致的指数函数的连续作用的作用,这是泊松和玻尔兹曼经典分布的先驱,最近讨论过。提出了论点来证明一个普遍的特征出现:随着温度的降低,凸 Arrhenius 图(-Arrhenius 行为)在越来越广泛的背景下得到充分证明,例如粘度和玻璃转变、生物过程、酶催化、等离子体催化、地球化学流动性以及涉及集体现象的化学反应。该处理扩展了 Fowler 和 Guggenheim 从量子角度制定的经典 Tolman 定理:过程的激活能与微观能量的平均值有关。我们之前介绍了“传递性”的概念,这是一个功能,可以简洁地说明启发式公式的发展,并建议寻找普遍行为。远离热力学极限的速度分布函数被说明;对于低温转变和非平衡反应速率的动力学的描述,推导了超过某个阈值的能量的分子分数。经典情况的统一扩展包括量子隧穿(导致图的凹度,-Arrhenius 行为)和费米和玻色统计已经在其他地方进行了考虑。一篇配套的论文提出了一个计算代码,允许应用于各种现象,并提供了更多的例子。