Interdisciplinary Research Department, Alexandru I. Cuza University, 700506 Iasi, Romania.
Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania.
Anal Chem. 2020 Jun 2;92(11):7800-7807. doi: 10.1021/acs.analchem.0c00976. Epub 2020 May 19.
In this work, comparative studies on DNA-PNA and polyarginine-conjugated DNA-PNA duplexes unzipping inside the α-hemolysin nanopore (α-HL) are presented. We identified significant differences in the blockade currents, as the applied voltage across the nanopore facilitated the duplex capture inside the nanopore's vestibule against the constriction region, subsequent cDNA strand insertion inside the nanopore's β-barrel past the constriction site, its complete unzip from the duplex, and translocation. We observed that inside the voltage-biased nanopore, polyarginine-conjugated DNA-PNA duplexes dehybridize faster than their DNA-PNA counterparts and proposed a model to describe the duplex unzipping. This study identifies key particularities of DNA-PNA duplex unzipping as it takes place inside the nanopore and being preceded by entrapment in the vestibule domain of the α-HL. Our results are a crucial step toward understanding the nucleic acids duplexes unzipping kinetics variability, in confined, variable geometries.
本工作对 DNA-PNA 和聚精氨酸修饰的 DNA-PNA 双链体在α-溶血素纳米孔(α-HL)内解链的比较研究进行了介绍。我们发现,阻断电流存在显著差异,因为施加在纳米孔两端的电压有助于双链体在纳米孔入口处捕获,并抵抗在限制区域的压缩,随后 cDNA 链插入纳米孔的β-桶内,越过限制部位,完全从双链体中解链并转位。我们观察到,在带电压的纳米孔内,聚精氨酸修饰的 DNA-PNA 双链体的解链速度快于其 DNA-PNA 对应物,并提出了一个模型来描述双链体的解链过程。本研究确定了 DNA-PNA 双链体在纳米孔内解链的关键特性,因为它发生在被束缚在 α-HL 的入口域之前。我们的研究结果是理解在受限、可变几何形状下核酸双链体解链动力学变化的重要一步。