Suppr超能文献

纳米孔中粒子捕获的分析模型阐明了电泳、电渗流和介电泳之间的竞争。

Analytical Model for Particle Capture in Nanopores Elucidates Competition among Electrophoresis, Electroosmosis, and Dielectrophoresis.

机构信息

Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.

Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.

出版信息

ACS Nano. 2020 Nov 24;14(11):15816-15828. doi: 10.1021/acsnano.0c06981. Epub 2020 Nov 10.

Abstract

The interaction between nanoparticles dispersed in a fluid and nanopores is governed by the interplay of hydrodynamical, electrical, and chemical effects. We developed a theory for particle capture in nanopores and derived analytical expressions for the capture rate under the concurrent action of electrical forces, fluid advection, and Brownian motion. Our approach naturally splits the average capture time in two terms, an due to the migration of particles from the bulk to the pore mouth and an associated with a free-energy barrier at the pore entrance. Within this theoretical framework, we described the standard experimental condition where a particle concentration is driven into the pore by an applied voltage, with specific focus on different capture mechanisms: under pure electrophoretic force, in the presence of a competition between electrophoresis and electroosmosis, and finally under dielectrophoretic reorientation of dipolar particles. Our theory predicts that dielectrophoresis is able to induce capture for both positive and negative voltages. We performed a dedicated experiment involving a biological nanopore (α-hemolysin) and a rigid dipolar dumbbell (realized with a β-hairpin peptide) that confirms the theoretically proposed capture mechanism.

摘要

分散在流体中的纳米粒子与纳米孔之间的相互作用受水动力、电力和化学效应的相互作用控制。我们开发了一种用于纳米孔中颗粒捕获的理论,并推导出了在电场力、流体对流和布朗运动共同作用下的捕获率的解析表达式。我们的方法自然地将平均捕获时间分为两部分,一部分是由于颗粒从主体迁移到孔口,另一部分是由于孔入口处的自由能势垒。在这个理论框架内,我们描述了标准的实验条件,即通过施加电压将颗粒浓度驱动到孔中,并特别关注不同的捕获机制:在纯电泳力作用下,在电泳和电渗流之间的竞争存在下,以及最后在偶极粒子的介电泳重取向下。我们的理论预测,介电泳能够在正电压和负电压下都能诱导捕获。我们进行了一项涉及生物纳米孔(α-溶血素)和刚性偶极哑铃(由β-发夹肽实现)的专门实验,证实了理论上提出的捕获机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c10/8016366/aedfbb828957/nn0c06981_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验