Suppr超能文献

一种用于β地中海贫血和HbE携带者筛查的决策支持方案。

A decision support scheme for beta thalassemia and HbE carrier screening.

作者信息

Das Reena, Datta Saikat, Kaviraj Anilava, Sanyal Soumendra Nath, Nielsen Peter, Nielsen Izabela, Sharma Prashant, Sanyal Tanmay, Dey Kartick, Saha Subrata

机构信息

Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.

Department of Clinical Hematology, Anandaloke Hospital, Siliguri 734001, India.

出版信息

J Adv Res. 2020 Apr 24;24:183-190. doi: 10.1016/j.jare.2020.04.005. eCollection 2020 Jul.

Abstract

The most effective way to combat β-thalassemias is to prevent the birth of children with thalassemia major. Therefore, a cost-effective screening method is essential to identify β-thalassemia traits (BTT) and differentiate normal individuals from carriers. We considered five hematological parameters to formulate two separate scoring mechanisms, one for BTT detection, and another for joint determination of hemoglobin E (HbE) trait and BTT by employing decision trees, Naïve Bayes classifier, and Artificial neural network frameworks on data collected from the Postgraduate Institute of Medical Education and Research, Chandigarh, India. We validated both the scores on two different data sets and found 100% sensitivity of both the scores with their respective threshold values. The results revealed the specificity of the screening scores to be 79.25% and 91.74% for BTT and 58.62% and 78.03% for the joint score of HbE and BTT, respectively. A lower Youden's index was measured for the two scores compared to some existing indices. Therefore, the proposed scores can obviate a large portion of the population from expensive high-performance liquid chromatography (HPLC) analysis during the screening of BTT, and joint determination of BTT and HbE, respectively, thereby saving significant resources and cost currently being utilized for screening purpose.

摘要

对抗β地中海贫血最有效的方法是防止重型地中海贫血患儿出生。因此,一种经济高效的筛查方法对于识别β地中海贫血特征(BTT)并区分正常个体与携带者至关重要。我们考虑了五个血液学参数来制定两种不同的评分机制,一种用于检测BTT,另一种用于通过对从印度昌迪加尔医学教育与研究研究生院收集的数据采用决策树、朴素贝叶斯分类器和人工神经网络框架来联合测定血红蛋白E(HbE)特征和BTT。我们在两个不同的数据集上验证了这两种评分,发现两种评分在各自阈值下的敏感性均为100%。结果显示,BTT筛查评分的特异性分别为79.25%和91.74%,HbE和BTT联合评分的特异性分别为58.62%和78.03%。与一些现有指标相比,这两种评分的约登指数较低。因此,所提出的评分可以在BTT筛查以及BTT和HbE联合测定过程中,使很大一部分人群无需进行昂贵的高效液相色谱(HPLC)分析,从而节省目前用于筛查目的的大量资源和成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a274/7186556/a64dc98c2ecf/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验