Suppr超能文献

基于血红蛋白电泳图像的深度学习辅助地中海贫血自动评估

Deep Learning Assisted Automated Assessment of Thalassaemia from Haemoglobin Electrophoresis Images.

作者信息

Salman Khan Muhammad, Ullah Azmat, Khan Kaleem Nawaz, Riaz Huma, Yousafzai Yasar Mehmood, Rahman Tawsifur, Chowdhury Muhammad E H, Abul Kashem Saad Bin

机构信息

Department of Electrical Engineering, College of Engineering, Qatar University, Doha P.O. BOX 2713, Qatar.

Artificial Intelligence in Healthcare, Intelligent Information Processing Lab, National Center of Artificial Intelligence, University of Engineering and Technology Peshawar, Peshawar 25000, Pakistan.

出版信息

Diagnostics (Basel). 2022 Oct 3;12(10):2405. doi: 10.3390/diagnostics12102405.

Abstract

Haemoglobin (Hb) electrophoresis is a method of blood testing used to detect thalassaemia. However, the interpretation of the result of the electrophoresis test itself is a complex task. Expert haematologists, specifically in developing countries, are relatively few in number and are usually overburdened. To assist them with their workload, in this paper we present a novel method for the automated assessment of thalassaemia using Hb electrophoresis images. Moreover, in this study we compile a large Hb electrophoresis image dataset, consisting of 103 strips containing 524 electrophoresis images with a clear consensus on the quality of electrophoresis obtained from 824 subjects. The proposed methodology is split into two parts: (1) single-patient electrophoresis image segmentation by means of the lane extraction technique, and (2) binary classification (normal or abnormal) of the electrophoresis images using state-of-the-art deep convolutional neural networks (CNNs) and using the concept of transfer learning. Image processing techniques including filtering and morphological operations are applied for object detection and lane extraction to automatically separate the lanes and classify them using CNN models. Seven different CNN models (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, SqueezeNet and MobileNetV2) were investigated in this study. InceptionV3 outperformed the other CNNs in detecting thalassaemia using Hb electrophoresis images. The accuracy, precision, recall, f1-score, and specificity in the detection of thalassaemia obtained with the InceptionV3 model were 95.8%, 95.84%, 95.8%, 95.8% and 95.8%, respectively. MobileNetV2 demonstrated an accuracy, precision, recall, f1-score, and specificity of 95.72%, 95.73%, 95.72%, 95.7% and 95.72% respectively. Its performance was comparable with the best performing model, InceptionV3. Since it is a very shallow network, MobileNetV2 also provides the least latency in processing a single-patient image and it can be suitably used for mobile applications. The proposed approach, which has shown very high classification accuracy, will assist in the rapid and robust detection of thalassaemia using Hb electrophoresis images.

摘要

血红蛋白(Hb)电泳是一种用于检测地中海贫血的血液检测方法。然而,电泳测试结果本身的解读是一项复杂的任务。专业血液学家,特别是在发展中国家,数量相对较少且通常负担过重。为了帮助他们减轻工作量,在本文中,我们提出了一种使用Hb电泳图像自动评估地中海贫血的新方法。此外,在本研究中,我们编制了一个大型Hb电泳图像数据集,其中包含103条电泳条带,含有524张电泳图像,并且对从824名受试者获得的电泳质量有明确的共识。所提出的方法分为两个部分:(1)通过泳道提取技术对单患者电泳图像进行分割,以及(2)使用最先进的深度卷积神经网络(CNN)并运用迁移学习的概念对电泳图像进行二分类(正常或异常)。包括滤波和形态学操作在内的图像处理技术被应用于目标检测和泳道提取,以自动分离泳道并使用CNN模型对其进行分类。本研究中研究了七种不同的CNN模型(ResNet18、ResNet50、ResNet101、InceptionV3、DenseNet201、SqueezeNet和MobileNetV2)。InceptionV3在使用Hb电泳图像检测地中海贫血方面优于其他CNN。使用InceptionV3模型检测地中海贫血时的准确率、精确率、召回率、F1分数和特异性分别为95.8%、95.84%、95.8%、95.8%和95.8%。MobileNetV2的准确率、精确率、召回率、F1分数和特异性分别为95.72%、95.73%、95.72%、95.7%和95.72%。其性能与表现最佳的模型InceptionV3相当。由于它是一个非常浅的网络,MobileNetV2在处理单患者图像时也提供了最少的延迟,并且它可以适用于移动应用。所提出的方法显示出非常高的分类准确率,将有助于使用Hb电泳图像快速、稳健地检测地中海贫血。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da06/9600204/a12a04f2d968/diagnostics-12-02405-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验