Horswill C A, Costill D L, Fink W J, Flynn M G, Kirwan J P, Mitchell J B, Houmard J A
Human Performance Laboratory, Ball State University, Muncie, IN 47306.
Med Sci Sports Exerc. 1988 Dec;20(6):566-9.
The purpose of this investigation was to determine the minimum oral dosage of bicarbonate needed to significantly elevate blood bicarbonate and the influence of induced alkalosis on performance in high-intensity, short-duration exercise. Nine endurance-trained cyclists performed four 2-min sprints on separate occasions using an isokinetic cycle ergometer (Fitron, Cybex, Inc.). One hour before each test, the cyclists consumed either a placebo (A), a solution of 0.10 g NaHCO3.kg-1 body weight (B), a solution of 0.15 g NaHCO3.kg-1 body weight (C), or a solution of 0.20 g NaHCO3.kg-1 body weight (D) in random order. Arterialized venous blood was taken before (PRE) and after (POST) ingestion, and 1, 3, 5, 10, and 15 min following the 2-min bike sprint. The results showed a significant increase in POST blood bicarbonate, and the elevation was incrementally related to the dosage. There was, however, no significant improvement in performance. Total work (mean +/- SE) for each treatment (N.m per 2 min) were: A, 47,267 (+/- 2,472); B, 47,004 (+/- 3,094); C, 46,312 (+/- 2,964); and D, 47,190 (+/- 2,621). The results of this study show that incremental doses of NaHCO3 of 0.20 g.kg-1 and below produce incremental elevations in blood bicarbonate but do not produce improvements in performance for a sprint bout lasting 2 min.