Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA.
Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA.
Nat Commun. 2020 May 5;11(1):2211. doi: 10.1038/s41467-020-16055-5.
Microbial biofilm formation on indwelling medical devices causes persistent infections that cannot be cured with conventional antibiotics. To address this unmet challenge, we engineer tunable active surface topographies with micron-sized pillars that can beat at a programmable frequency and force level in an electromagnetic field. Compared to the flat and static controls, active topographies with the optimized design prevent biofilm formation and remove established biofilms of uropathogenic Escherichia coli (UPEC), Pseudomonas aeruginosa, and Staphylococcus aureus, with up to 3.7 logs of biomass reduction. In addition, the detached biofilm cells are found sensitized to bactericidal antibiotics to the level comparable to exponential-phase planktonic cells. Based on these findings, a prototype catheter is engineered and found to remain clean for at least 30 days under the flow of artificial urine medium, while the control catheters are blocked by UPEC biofilms within 5 days.
在留置医疗器械上形成的微生物生物膜会导致持续性感染,而传统抗生素对此无法治愈。为了解决这一未满足的挑战,我们通过工程设计制造了具有微米级支柱的可调主动表面形貌,这些支柱可以在电磁场中以可编程的频率和力水平进行拍打。与平面和静态对照相比,经过优化设计的主动形貌可以防止生物膜的形成,并去除尿路致病性大肠杆菌(UPEC)、铜绿假单胞菌和金黄色葡萄球菌已建立的生物膜,生物量减少高达 3.7 个对数级。此外,分离出的生物膜细胞对杀菌抗生素变得敏感,其敏感性可与指数期浮游细胞相当。基于这些发现,设计并制造了一种原型导管,在人工尿液介质的流动下至少能保持 30 天的清洁,而对照导管在 5 天内就被 UPEC 生物膜堵塞。