Suppr超能文献

用于生物膜清除的催化抗菌机器人。

Catalytic antimicrobial robots for biofilm eradication.

机构信息

Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, USA.

Solid-Biological Interface Group (SolBIN), Department of Physics, Universidade Federal do Ceará, Fortaleza-CE, Brazil.

出版信息

Sci Robot. 2019 Apr 24;4(29). doi: 10.1126/scirobotics.aaw2388.

Abstract

Magnetically driven robots can perform complex functions in biological settings with minimal destruction. However, robots designed to damage deleterious biostructures could also have important impact. In particular, there is an urgent need for new strategies to eradicate bacterial biofilms as we approach a post-antibiotic era. Biofilms are intractable and firmly attached structures ubiquitously associated with drug-resistant infections and destruction of surfaces. Existing treatments are inadequate to both kill and remove bacteria leading to reinfection. Here we design catalytic antimicrobial robots (CARs) that precisely and controllably kill, degrade and remove biofilms with remarkable efficiency. CARs exploit iron oxide nanoparticles (NPs) with dual catalytic-magnetic functionality that (i) generate bactericidal free radicals, (ii) breakdown the biofilm exopolysaccharide (EPS) matrix, and (iii) remove the fragmented biofilm debris via magnetic field driven robotic assemblies. We develop two distinct CAR platforms. The first platform, the biohybrid CAR, is formed from NPs and biofilm degradation products. After catalytic bacterial killing and EPS disruption, magnetic field gradients assemble NPs and the biodegraded products into a plow-like superstructure. When driven with an external magnetic field, the biohybrid CAR completely removes biomass in a controlled manner, preventing biofilm regrowth. Biohybrid CARs can be swept over broad swathes of surface or can be moved over well-defined paths for localized removal with microscale precision. The second platform, the 3D molded CAR, is a polymeric soft robot with embedded catalytic-magnetic NPs, formed in a customized 3D printed mold to perform specific tasks in enclosed domains. Vane-shaped CARs remove biofilms from curved walls of cylindrical tubes, and helicoid-shaped CARs drill through biofilm clogs, while simultaneously killing bacteria. In addition, we demonstrate applications of CARs to target highly confined anatomical surfaces in the interior of human teeth. These 'kill-degrade-and-remove' CARs systems could have significant impact in fighting persistent biofilm-infections and in mitigating biofouling of medical devices and diverse surfaces.

摘要

磁性驱动的机器人可以在最小破坏的情况下在生物环境中执行复杂的功能。然而,设计用于破坏有害生物结构的机器人也可能产生重要影响。特别是,在抗生素时代即将到来之际,我们迫切需要新的策略来根除细菌生物膜。生物膜是普遍存在的难以处理的牢固附着结构,与耐药性感染和表面破坏有关。现有的治疗方法不足以杀死和去除细菌,导致再次感染。在这里,我们设计了精确和可控的催化抗菌机器人 (CARs),以极高的效率杀死、降解和去除生物膜。CARs 利用具有双重催化-磁性功能的氧化铁纳米颗粒 (NPs),(i) 产生杀菌自由基,(ii) 破坏生物膜胞外多糖 (EPS) 基质,(iii) 通过磁场驱动的机器人组件去除碎片化的生物膜碎片。我们开发了两种不同的 CAR 平台。第一个平台,生物杂交 CAR,由 NPs 和生物膜降解产物组成。在催化细菌杀伤和 EPS 破坏后,磁场梯度将 NPs 和生物降解产物组装成犁状超结构。当用外部磁场驱动时,生物杂交 CAR 可以以受控的方式完全去除生物量,防止生物膜再生。生物杂交 CAR 可以在较宽的表面上扫荡,也可以在微尺度精度上沿明确定义的路径移动,用于局部去除。第二个平台,3D 成型 CAR,是一种具有嵌入式催化-磁性 NPs 的聚合物软机器人,由定制的 3D 打印模具形成,用于在封闭区域执行特定任务。叶片状 CAR 从圆柱形管的弯曲壁上去除生物膜,螺旋状 CAR 钻透生物膜堵塞物,同时杀死细菌。此外,我们还展示了 CAR 在靶向人类牙齿内部高度受限的解剖表面的应用。这些“杀灭-降解-去除”的 CAR 系统在对抗持久性生物膜感染和减轻医疗器械和各种表面的生物污垢方面可能具有重要影响。

相似文献

2
Microrobotics for Precision Biofilm Diagnostics and Treatment.用于精准生物膜诊断和治疗的微型机器人。
J Dent Res. 2022 Aug;101(9):1009-1014. doi: 10.1177/00220345221087149. Epub 2022 Apr 21.
3
Therapeutic Strategies against Biofilm Infections.针对生物膜感染的治疗策略。
Life (Basel). 2023 Jan 6;13(1):172. doi: 10.3390/life13010172.

引用本文的文献

5
Technology Roadmap of Micro/Nanorobots.微纳机器人技术路线图
ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27.
6
Microrobots for Antibiotic-Resistant Skin Colony Eradication.用于根除耐抗生素皮肤菌落的微型机器人。
ACS Appl Mater Interfaces. 2025 Jul 9;17(27):39340-39348. doi: 10.1021/acsami.5c08683. Epub 2025 Jun 25.
8
Yeast-Driven and Bioimpedance-Sensitive Biohybrid Soft Robots.酵母驱动且对生物阻抗敏感的生物杂交软机器人
Cyborg Bionic Syst. 2025 Apr 25;6:0233. doi: 10.34133/cbsystems.0233. eCollection 2025.
10
Micro- and Nano-Bots for Infection Control.用于感染控制的微型和纳米机器人。
Adv Mater. 2025 Jun;37(24):e2419155. doi: 10.1002/adma.202419155. Epub 2025 Apr 10.

本文引用的文献

5
Small-Scale Machines Driven by External Power Sources.受外部动力源驱动的小型机器。
Adv Mater. 2018 Apr;30(15):e1705061. doi: 10.1002/adma.201705061. Epub 2018 Feb 14.
6
Emerging Biomedical Applications of Enzyme-Like Catalytic Nanomaterials.酶样催化纳米材料的新兴生物医学应用。
Trends Biotechnol. 2018 Jan;36(1):15-29. doi: 10.1016/j.tibtech.2017.09.006. Epub 2017 Oct 26.
8
Targeting microbial biofilms: current and prospective therapeutic strategies.靶向微生物生物膜:当前及未来的治疗策略
Nat Rev Microbiol. 2017 Dec;15(12):740-755. doi: 10.1038/nrmicro.2017.99. Epub 2017 Sep 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验