Chen Liang, Lin Rui, Chen Xiadong, Hao Zhixian, Diao Xiaoyu, Froning Dieter, Tang Shenghao
School of Automotive Studies, Tongji University, Shanghai 201804, China.
School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
ACS Appl Mater Interfaces. 2020 May 27;12(21):24048-24058. doi: 10.1021/acsami.0c05416. Epub 2020 May 14.
To optimize the interface of the catalyst layer (CL) and gas diffusion layer (GDL) in polymer electrolyte membrane fuel cells (PEMFCs), microporous layers (MPLs) with different decorative patterns were prepared. Carbon paper treated with polytetrafluoroethylene was used as a substrate for the coating of MPLs. To accelerate water removal and gas permeation, ammonium chloride was utilized to improve the porous structure of MPLs. Owing to the recrystallization and pyrolysis of ammonium chloride with different contents, the surface of MPLs exhibited point-, line-, and flowerlike patterns. Membrane electrode assemblies (MEAs) were assembled to evaluate the performance of MPLs with different decorative patterns. From measurements, an MEA containing a porosity-graded MPL (MPL-G) with a flowerlike pattern exhibited the best electrochemical performance. It is because that graded porosity accelerates the removal of excessive water. The flowerlike pattern facilitates the diffusion of the reactant gas at the interface of the catalyst layer and MPL. With the measurement of segmented cell technology, such MEAs revealed an improved redispersion of reactant gases. Furthermore, the produced water was compressed to the gas outlet, providing a larger active region for reaction. These results indicate that pattern design of MPLs is a promising strategy to improve the mass-transfer efficiency at the interface of the catalyst layer and gas diffusion layer.
为了优化聚合物电解质膜燃料电池(PEMFC)中催化剂层(CL)与气体扩散层(GDL)的界面,制备了具有不同装饰图案的微孔层(MPL)。用聚四氟乙烯处理过的碳纸用作MPL涂层的基底。为了加速水的去除和气体渗透,利用氯化铵来改善MPL的多孔结构。由于不同含量氯化铵的重结晶和热解作用,MPL的表面呈现出点状、线状和花状图案。组装了膜电极组件(MEA)来评估具有不同装饰图案的MPL的性能。通过测量发现,包含具有花状图案的孔隙率渐变MPL(MPL-G)的MEA表现出最佳的电化学性能。这是因为渐变的孔隙率加速了过量水的去除。花状图案促进了反应气体在催化剂层与MPL界面处的扩散。通过分段电池技术测量,此类MEA显示出反应气体再分散性的改善。此外,产生的水被压缩到气体出口,为反应提供了更大的活性区域。这些结果表明,MPL的图案设计是提高催化剂层与气体扩散层界面传质效率的一种有前景的策略。