Schwartz Nicholas, Harrington Jason, Ziegler Kirk J, Cox Philip
Mainstream Engineering Corporation, 200 Yellow Pl, Rockledge, Florida 32955, United States.
University of Florida, 1030 Center Drive, Gainesville, Florida 32611, United States.
ACS Omega. 2022 Aug 16;7(34):29832-29839. doi: 10.1021/acsomega.2c02669. eCollection 2022 Aug 30.
The effects of gas diffusion layer (GDL) and electrode microstructure, which influence the catalyst layer and catalyst-membrane interface on the performance of a membrane electrode assembly (MEA) for gas-phase electrolysis and the separation of CO were experimentally characterized. Several types of GDL materials, with and without a microporous layer (MPL), were characterized using scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis. The diffusion of reactants through the GDL materials was measured to determine the effects on the microstructure and chemical properties on mass transport. The effects on the GDL structure and chemistry were determined through evaluation of Pt-IrO MEAs with different GDL materials using constant-current measurements. Increasing the thickness of the MPL and hydrophobicity within the GDL assist with retaining water within the membrane and catalyst layers, which results in greater performance at high current densities.
实验表征了气体扩散层(GDL)和电极微观结构对气相电解和CO分离的膜电极组件(MEA)性能的影响,这些影响涉及催化剂层和催化剂-膜界面。使用扫描电子显微镜(SEM)和布鲁诺尔-埃米特-泰勒(BET)表面积分析对几种有或无微孔层(MPL)的GDL材料进行了表征。测量反应物通过GDL材料的扩散,以确定微观结构和化学性质对质量传输的影响。通过使用恒流测量评估具有不同GDL材料的Pt-IrO MEA,确定了对GDL结构和化学性质(的影响)。增加MPL的厚度和GDL内的疏水性有助于将水保留在膜和催化剂层内,从而在高电流密度下具有更高的性能。