Delta Hat, Nottingham, UK.
BresMed, Sheffield, UK.
BMC Med Res Methodol. 2020 May 6;20(1):103. doi: 10.1186/s12874-020-00997-x.
Due to limited duration of follow up in clinical trials of cancer treatments, estimates of lifetime survival benefits are typically derived using statistical extrapolation methods. To justify the method used, a range of approaches have been proposed including statistical goodness-of-fit tests and comparing estimates against a previous data cut (i.e. interim data collected). In this study, we extend these approaches by presenting a range of extrapolations fitted to four pre-planned data cuts from the JAVELIN Merkel 200 (JM200) trial. By comparing different estimates of survival and goodness-of-fit as JM200 data mature, we undertook an iterative process of fitting and re-fitting survival models to retrospectively identify early indications of likely long-term survival.
Standard and spline-based parametric models were fitted to overall survival data from each JM200 data cut. Goodness-of-fit was determined using an assessment of the estimated hazard function, information theory-based methods and objective comparisons of estimation accuracy. Best-fitting extrapolations were compared to establish which one provided the most accurate estimation, and how statistical goodness-of-fit differed.
Spline-based models provided the closest fit to the final JM200 data cut, though all extrapolation methods based on the earliest data cut underestimated the 'true' long-term survival (difference in restricted mean survival time [RMST] at 36 months: - 1.1 to - 0.5 months). Goodness-of-fit scores illustrated that an increasingly flexible model was favored as data matured. Given an early data cut, a more flexible model better aligned with clinical expectations could be reasonably justified using a range of metrics, including RMST and goodness-of-fit scores (which were typically within a 2-point range of the statistically 'best-fitting' model).
Survival estimates from the spline-based models are more aligned with clinical expectation and provided a better fit to the JM200 data, despite not exhibiting the definitively 'best' statistical goodness-of-fit. Longer-term data are required to further validate extrapolations, though this study illustrates the importance of clinical plausibility when selecting the most appropriate model. In addition, hazard-based plots and goodness-of-fit tests from multiple data cuts present useful approaches to identify when a more flexible model may be advantageous.
JAVELIN Merkel 200 was registered with ClinicalTrials.gov as NCT02155647 on June 4, 2014.
由于癌症治疗临床试验的随访时间有限,终生生存获益的估计通常采用统计外推方法得出。为了证明所使用方法的合理性,已经提出了一系列方法,包括统计拟合优度检验和将估计值与以前的数据截止值(即收集的中期数据)进行比较。在这项研究中,我们通过对 JAVELIN Merkel 200(JM200)试验的四个预先计划的数据截止值进行一系列外推,扩展了这些方法。通过比较 JM200 数据成熟过程中不同的生存估计和拟合优度,我们进行了一个迭代过程,拟合和重新拟合生存模型,以回顾性地确定可能长期生存的早期迹象。
对来自每个 JM200 数据截止值的总生存数据进行标准和样条基于参数的模型拟合。使用对估计风险函数的评估、基于信息理论的方法和对估计准确性的客观比较来确定拟合优度。比较最佳拟合外推,以确定哪一个提供了最准确的估计,以及统计拟合优度有何不同。
样条基于模型与最终的 JM200 数据截止值最吻合,尽管基于最早数据截止值的所有外推方法都低估了“真实”长期生存(36 个月时受限平均生存时间 [RMST]的差异:-1.1 至-0.5 个月)。拟合优度评分表明,随着数据的成熟,越来越灵活的模型更受青睐。给定一个早期的数据截止值,使用一系列指标,包括 RMST 和拟合优度评分(通常在与统计学上“最佳拟合”模型相差 2 分的范围内),可以合理地证明更灵活的模型更符合临床预期。
尽管样条基于模型的生存估计与临床预期更吻合,并且与 JM200 数据的拟合更好,但它们并没有表现出明确的“最佳”统计拟合优度。需要更长时间的数据来进一步验证外推,尽管这项研究说明了在选择最合适的模型时,临床合理性的重要性。此外,来自多个数据截止值的基于危险的图和拟合优度检验提供了有用的方法来确定何时更灵活的模型可能是有利的。
JAVELIN Merkel 200 于 2014 年 6 月 4 日在 ClinicalTrials.gov 上注册为 NCT02155647。