Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA.
Department of Basic Sciences, USA.
Exp Eye Res. 2020 Aug;197:108046. doi: 10.1016/j.exer.2020.108046. Epub 2020 May 4.
Segmental flow in the human trabecular meshwork is a well-documented phenomenon but in depth mechanistic investigations of high flow (HF) and low flow (LF) regions are restricted due to the small amount of tissue available from a single donor. To address this issue we have generated and characterized multiple paired HF and LF cell strains. Here paired HF and LF cell strains were generated from single donors. Cells were characterized for growth and proliferation, as well as gene and protein expression of potential segmental region markers. Cells isolated from HF and LF regions have similar growth and proliferation rates. Gene expression data reveals vascular cell adhesion protein 1 (VCAM1), thrombospondin 2 (THBS2), and tissue inhibitor of metalloproteinase 1 (TIMP1) are potential markers of LF cells in vitro. Protein expression of VCAM1, THBS2 and TIMP1 are complex and may reflect the dynamic nature of the TM. Initial protein expression levels of these genes is either similar between HF and LF cells (VCAM1, THBS2), or higher in HF compared to LF in some strains (TIMP1). However, after long term culture LF cells express higher levels of VCAM1, TIMP1 and THBS2 protein compared to HF cells. HF and LF cell strains are a powerful new tool that enable understanding segmental flow allowing for multiple experiments on the same genetic background.
人眼小梁组织中的节段性流动是一种已有充分文献记载的现象,但由于从单个供体获得的组织量较少,因此对高流量 (HF) 和低流量 (LF) 区域的深入机制研究受到限制。为了解决这个问题,我们已经生成并表征了多个配对的 HF 和 LF 细胞系。在这里,我们从单个供体中生成了配对的 HF 和 LF 细胞系。对细胞进行了生长和增殖以及潜在节段区域标记物的基因和蛋白表达的特征分析。从 HF 和 LF 区域分离的细胞具有相似的生长和增殖速率。基因表达数据表明,血管细胞黏附分子 1 (VCAM1)、血小板反应蛋白 2 (THBS2) 和金属蛋白酶组织抑制剂 1 (TIMP1) 是体外 LF 细胞的潜在标记物。VCAM1、THBS2 和 TIMP1 的蛋白表达复杂,可能反映了 TM 的动态特性。这些基因的初始蛋白表达水平在 HF 和 LF 细胞之间相似 (VCAM1、THBS2),或者在某些细胞系中 HF 比 LF 更高 (TIMP1)。然而,经过长期培养,LF 细胞表达的 VCAM1、TIMP1 和 THBS2 蛋白水平明显高于 HF 细胞。HF 和 LF 细胞系是一种强大的新工具,可用于理解节段性流动,从而在相同的遗传背景下进行多种实验。